
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2841456/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials-driven fibronectin assembly on nanoscale topography enhances mesenchymal stem cell adhesion, protecting cells from bacterial virulence factors and preventing biofilm formation. Biomaterials, 2022, 280, 121263.	11.4	21
2	An In Vitro Evaluation of Denture Cleansing Regimens against a Polymicrobial Denture Biofilm Model. Antibiotics, 2022, 11, 113.	3.7	6
3	Population genetics and microevolution of clinical <i>Candida glabrata</i> reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes, and drug targets. Genetics, 2022, 221, .	2.9	11
4	Small molecule based anti-virulence approaches against <i>Candida albicans</i> infections. Critical Reviews in Microbiology, 2022, 48, 743-769.	6.1	7
5	Assessing the inflammatory response to in vitro polymicrobial wound biofilms in a skin epidermis model. Npj Biofilms and Microbiomes, 2022, 8, 19.	6.4	9
6	Candida albicans and Enterococcus faecalis biofilm frenemies: When the relationship sours. Biofilm, 2022, 4, 100072.	3.8	8
7	Cell Viability Assays for Candida auris. Methods in Molecular Biology, 2022, , 129-153.	0.9	3
8	Investigating Dual-Species Candida auris and Staphylococcal Biofilm Antiseptic Challenge. Antibiotics, 2022, 11, 931.	3.7	4
9	Non-typeable <i>Haemophilus influenzae</i> chronic colonization in chronic obstructive pulmonary disease (COPD). Critical Reviews in Microbiology, 2021, 47, 192-205.	6.1	18
10	Dyeing fungi: amphotericin B based fluorescent probes for multiplexed imaging. Chemical Communications, 2021, 57, 1899-1902.	4.1	9
11	A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111617.	5.0	29
12	Mechanical biofilm disruption causes microbial and immunological shifts in periodontitis patients. Scientific Reports, 2021, 11, 9796.	3.3	30
13	Effects of Antifungal Carriers Based on Chitosan-Coated Iron Oxide Nanoparticles on Microcosm Biofilms. Antibiotics, 2021, 10, 588.	3.7	12
14	Assessing the Bioactive Profile of Antifungal-Loaded Calcium Sulfate against Fungal Biofilms. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	6
15	Recurrent Vulvovaginal Candidiasis: a Dynamic Interkingdom Biofilm Disease of <i>Candida</i> and <i>Lactobacillus</i> . MSystems, 2021, 6, e0062221.	3.8	35
16	ldentification and Phenotypic Characterization of Hsp90 Phosphorylation Sites That Modulate Virulence Traits in the Major Human Fungal Pathogen Candida albicans. Frontiers in Cellular and Infection Microbiology, 2021, 11, 637836.	3.9	9
17	<i>Candida albicans</i> biofilms and polymicrobial interactions. Critical Reviews in Microbiology, 2021, 47, 91-111.	6.1	96
18	Candida albicans as an Essential "Keystone―Component within Polymicrobial Oral Biofilm Models?. Microorganisms, 2021, 9, 59.	3.6	23

GORDON RAMAGE

#	Article	IF	CITATIONS
19	Antifungal loaded calcium sulfate beads as a potential therapeutic in combating Candida auris. Antimicrobial Agents and Chemotherapy, 2021, , AAC0171321.	3.2	0
20	Chitosan Enhances the Anti-Biofilm Activity of Biodentine against an Interkingdom Biofilm Model. Antibiotics, 2021, 10, 1317.	3.7	5
21	Investigating the Transcriptome of Candida albicans in a Dual-Species Staphylococcus aureus Biofilm Model. Frontiers in Cellular and Infection Microbiology, 2021, 11, 791523.	3.9	10
22	Reduction of Pseudomonas aeruginosa biofilm formation through the application of nanoscale vibration. Journal of Bioscience and Bioengineering, 2020, 129, 379-386.	2.2	1
23	Minimum information guideline for spectrophotometric and fluorometric methods to assess biofilm formation in microplates. Biofilm, 2020, 2, 100010.	3.8	50
24	Comparison of Three Endodontic Irrigant Regimens against Dual-Species Interkingdom Biofilms: Considerations for Maintaining the Status Quo. Antibiotics, 2020, 9, 634.	3.7	7
25	Multi-omics tools for studying microbial biofilms: current perspectives and future directions. Critical Reviews in Microbiology, 2020, 46, 759-778.	6.1	27
26	A nanocarrier system that potentiates the effect of miconazole within different interkingdom biofilms. Journal of Oral Microbiology, 2020, 12, 1771071.	2.7	12
27	Filling the Void: An Optimized Polymicrobial Interkingdom Biofilm Model for Assessing Novel Antimicrobial Agents in Endodontic Infection. Microorganisms, 2020, 8, 1988.	3.6	4
28	Chitosan Ameliorates Candida auris Virulence in a Galleria mellonella Infection Model. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	22
29	Candida auris: A Decade of Understanding of an Enigmatic Pathogenic Yeast. Journal of Fungi (Basel,) Tj ETQq1 I	1 0,78431	4 rggT /Overld
30	Candida auris Phenotypic Heterogeneity Determines Pathogenicity <i>In Vitro</i> . MSphere, 2020, 5, .	2.9	46
31	The systemic inflammatory response following hand instrumentation versus ultrasonic instrumentation—A randomized controlled trial. Journal of Clinical Periodontology, 2020, 47, 1087-1097.	4.9	7
32	Novel nanocarrier of miconazole based on chitosan-coated iron oxide nanoparticles as a nanotherapy to fight Candida biofilms. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111080.	5.0	37
33	Development of a high throughput and low cost model for the study of semi-dry biofilms. Biofouling, 2020, 36, 403-415.	2.2	9
34	Combined Antifungal Resistance and Biofilm Tolerance: the Global Threat of Candida auris. MSphere, 2019, 4, .	2.9	87
35	Interkingdom interactions on the denture surface: Implications for oral hygiene. Biofilm, 2019, 1, 100002.	3.8	15
36	Biofilm-stimulated epithelium modulates the inflammatory responses in co-cultured immune cells. Scientific Reports, 2019, 9, 15779.	3.3	33

#	Article	IF	CITATIONS
37	Candida albicans Biofilm Heterogeneity and Tolerance of Clinical Isolates: Implications for Secondary Endodontic Infections. Antibiotics, 2019, 8, 204.	3.7	16
38	Assessing the impact of curcumin on dualâ€species biofilms formed by <i>Streptococcus mutans</i> and <i>Candida albicans</i> . MicrobiologyOpen, 2019, 8, e937.	3.0	46
39	Repurposing Pilocarpine Hydrochloride for Treatment of Candida albicans Infections. MSphere, 2019, 4, .	2.9	17
40	Impact of frequency of denture cleaning on microbial and clinical parameters – a bench to chairside approach. Journal of Oral Microbiology, 2019, 11, 1538437.	2.7	20
41	Polymicrobial oral biofilm models: simplifying the complex. Journal of Medical Microbiology, 2019, 68, 1573-1584.	1.8	39
42	Community Development between <i>Porphyromonas gingivalis</i> and <i>Candida albicans</i> Mediated by InlJ and Als3. MBio, 2018, 9, .	4.1	68
43	Nanoimprinting of biomedical polymers reduces candidal physical adhesion. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1045-1049.	3.3	13
44	Surface disinfection challenges for Candida auris: an in-vitro study. Journal of Hospital Infection, 2018, 98, 433-436.	2.9	84
45	Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surface, 2018, 1, 43-56.	3.0	20
46	The comparative efficacy of antiseptics against Candida auris biofilms. International Journal of Antimicrobial Agents, 2018, 52, 673-677.	2.5	67
47	Fungi at the Scene of the Crime: Innocent Bystanders or Accomplices in Oral Infections?. Current Clinical Microbiology Reports, 2018, 5, 190-200.	3.4	25
48	Transcriptome Assembly and Profiling of <i>Candida auris</i> Reveals Novel Insights into Biofilm-Mediated Resistance. MSphere, 2018, 3, .	2.9	151
49	Gaining Insights from Candida Biofilm Heterogeneity: One Size Does Not Fit All. Journal of Fungi (Basel, Switzerland), 2018, 4, 12.	3.5	36
50	Methodologies for in vitro and in vivo evaluation of efficacy of antifungal and antibiofilm agents and surface coatings against fungal biofilms. Microbial Cell, 2018, 5, 300-326.	3.2	81
51	Evaluating Streptococcus mutans Strain Dependent Characteristics in a Polymicrobial Biofilm Community. Frontiers in Microbiology, 2018, 9, 1498.	3.5	30
52	The application of phenotypic microarray analysis to anti-fungal drug development. Journal of Microbiological Methods, 2017, 134, 35-37.	1.6	3
53	Efficacy of rifampicin combination therapy for the treatment of enterococcal infections assessed in vivo using a Galleria mellonella infection model. International Journal of Antimicrobial Agents, 2017, 49, 507-511.	2.5	18
54	Implications of Antimicrobial Combinations in Complex Wound Biofilms Containing Fungi. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	31

#	Article	IF	CITATIONS
55	Biofilms Formed by Isolates from Recurrent Vulvovaginal Candidiasis Patients Are Heterogeneous and Insensitive to Fluconazole. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	66
56	Denture Stomatitis: Causes, Cures and Prevention. Primary Dental Journal, 2017, 6, 46-51.	0.6	55
57	Biofilm-Forming Capability of Highly Virulent, Multidrug-Resistant <i>Candida auris</i> . Emerging Infectious Diseases, 2017, 23, 328-331.	4.3	296
58	Candida albicans Mycofilms Support Staphylococcus aureus Colonization and Enhances Miconazole Resistance in Dual-Species Interactions. Frontiers in Microbiology, 2017, 8, 258.	3.5	128
59	The Anti-Adhesive Effect of Curcumin on Candida albicans Biofilms on Denture Materials. Frontiers in Microbiology, 2017, 8, 659.	3.5	60
60	Antibacterial Activity of 1-[(2,4-Dichlorophenethyl)amino]-3-Phenoxypropan-2-ol against Antibiotic-Resistant Strains of Diverse Bacterial Pathogens, Biofilms and in Pre-clinical Infection Models. Frontiers in Microbiology, 2017, 8, 2585.	3.5	9
61	Candida albicans biofilm heterogeneity does not influence denture stomatitis but strongly influences denture cleansing capacity. Journal of Medical Microbiology, 2017, 66, 54-60.	1.8	22
62	Clinical Implications ofÂInterkingdom Fungal and Bacterial Biofilms. , 2017, , 33-68.		0
63	Viable Compositional Analysis of an Eleven Species Oral Polymicrobial Biofilm. Frontiers in Microbiology, 2016, 7, 912.	3.5	47
64	A Prospective Surveillance Study of Candidaemia: Epidemiology, Risk Factors, Antifungal Treatment and Outcome in Hospitalized Patients. Frontiers in Microbiology, 2016, 7, 915.	3.5	60
65	RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. Biotechnology for Biofuels, 2016, 9, 145.	6.2	43
66	Dentures are a Reservoir for Respiratory Pathogens. Journal of Prosthodontics, 2016, 25, 99-104.	3.7	116
67	Pathogenesis of Fungal Infections in Cystic Fibrosis. Current Fungal Infection Reports, 2016, 10, 163-169.	2.6	49
68	One step closer to understanding the role of bacteria in diabetic foot ulcers: characterising the microbiome of ulcers. BMC Microbiology, 2016, 16, 54.	3.3	113
69	Development and characterisation of a novel three-dimensional inter-kingdom wound biofilm model. Biofouling, 2016, 32, 1259-1270.	2.2	34
70	A novel targeted/untargeted GC-Orbitrap metabolomics methodology applied to Candida albicans and Staphylococcus aureus biofilms. Metabolomics, 2016, 12, 189.	3.0	39
71	Integrating Candida albicans metabolism with biofilm heterogeneity by transcriptome mapping. Scientific Reports, 2016, 6, 35436.	3.3	39
72	Aspergillus Biofilms in Human Disease. Advances in Experimental Medicine and Biology, 2016, 931, 1-11.	1.6	17

#	Article	IF	CITATIONS
73	A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics, 2016, 12, 75.	3.0	53
74	Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection—Scotland, 2012–2013. Clinical Microbiology and Infection, 2016, 22, 87-93.	6.0	188
75	Comparing apples and oranges: considerations for quantifying candidal biofilms with XTT [2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide] and the need for standardized testing. Journal of Medical Microbiology, 2016, 65, 259-260.	1.8	16
76	In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response. PLoS ONE, 2016, 11, e0169157.	2.5	10
77	New strategic insights into managing fungal biofilms. Frontiers in Microbiology, 2015, 6, 1077.	3.5	28
78	The Oral Microbiome of Denture Wearers Is Influenced by Levels of Natural Dentition. PLoS ONE, 2015, 10, e0137717.	2.5	82
79	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66
80	<i>Aspergillus fumigatus</i> enhances elastase production in <i>Pseudomonas aeruginosa</i> co-cultures. Medical Mycology, 2015, 53, 645-655.	0.7	69
81	<scp>H</scp> igh osmolarity glycerol response <scp>PtcB</scp> phosphatase is important for <scp><i>A</i></scp> <i>spergillus fumigatus</i> virulence. Molecular Microbiology, 2015, 96, 42-54.	2.5	69
82	Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model. Eukaryotic Cell, 2015, 14, 834-844.	3.4	62
83	Prior in vitro exposure to voriconazole confers resistance to amphotericin B in Aspergillus fumigatus biofilms. International Journal of Antimicrobial Agents, 2015, 46, 342-345.	2.5	16
84	Polymicrobial <i>Candida</i> biofilms: friends and foe in the oral cavity. FEMS Yeast Research, 2015, 15, fov077.	2.3	76
85	Candida Virulence Factors. , 2015, , 7-19.		1
86	The Influence of Glycated Hemoglobin on the Cross Susceptibility Between Type 1 Diabetes Mellitus and Periodontal Disease. Journal of Periodontology, 2015, 86, 1249-1259.	3.4	17
87	Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food and Function, 2015, 6, 719-729.	4.6	100
88	Fungal Biofilms in Human Disease. Advances in Experimental Medicine and Biology, 2015, 831, 11-27.	1.6	18
89	A Novel Antifungal Is Active against Candida albicans Biofilms and Inhibits Mutagenic Acetaldehyde Production In Vitro. PLoS ONE, 2014, 9, e97864.	2.5	31
90	Clinical associations between IL-17 family cytokines and periodontitis and potential differential roles for IL-17A and IL-17E in periodontal immunity. Inflammation Research, 2014, 63, 1001-1012.	4.0	61

#	Article	IF	CITATIONS
91	Biofilms formed by Candida albicans bloodstream isolates display phenotypic and transcriptional heterogeneity that are associated with resistance and pathogenicity. BMC Microbiology, 2014, 14, 182.	3.3	124
92	Extracellular DNA release confers heterogeneity in Candida albicans biofilm formation. BMC Microbiology, 2014, 14, 303.	3.3	53
93	Strength in numbers: antifungal strategies against fungal biofilms. International Journal of Antimicrobial Agents, 2014, 43, 114-120.	2.5	79
94	Utilising polyphenols for the clinical management of Candida albicans biofilms. International Journal of Antimicrobial Agents, 2014, 44, 269-273.	2.5	86
95	Development of an in vitroperiodontal biofilm model for assessing antimicrobial and host modulatory effects of bioactive molecules. BMC Oral Health, 2014, 14, 80.	2.3	68
96	The Clinical Importance of Fungal Biofilms. Advances in Applied Microbiology, 2013, 84, 27-83.	2.4	41
97	Commercial mouthwashes are ineffective against oral MRSA biofilms. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2013, 115, 624-629.	0.4	21
98	Investigating the biological properties of carbohydrate derived fulvic acid (CHD-FA) as a potential novel therapy for the management of oral biofilm infections. BMC Oral Health, 2013, 13, 47.	2.3	35
99	Extracellular DNA Release Acts as an Antifungal Resistance Mechanism in Mature Aspergillus fumigatus Biofilms. Eukaryotic Cell, 2013, 12, 420-429.	3.4	137
100	Liposomal Amphotericin B Displays Rapid Dose-Dependent Activity against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2013, 57, 2369-2371.	3.2	49
101	The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatusA. Journal of Antimicrobial Chemotherapy, 2013, 68, 1486-1496.	3.0	243
102	Candida albicansFungaemia following Traumatic Urethral Catheterisation in a Paraplegic Patient with Diabetes Mellitus and Candiduria Treated by Caspofungin. Case Reports in Infectious Diseases, 2013, 2013, 1-6.	0.5	6
103	A sticky situation: extracellular DNA shapes Aspergillus fumigatus biofilms. Frontiers in Microbiology, 2013, 4, 159.	3.5	7
104	Fungal Biofilm Resistance. International Journal of Microbiology, 2012, 2012, 1-14.	2.3	403
105	Activity of Pyocin S2 against Pseudomonas aeruginosa Biofilms. Antimicrobial Agents and Chemotherapy, 2012, 56, 1599-1601.	3.2	41
106	Recent Advances on Filamentous Fungal Biofilms for Industrial Uses. Applied Biochemistry and Biotechnology, 2012, 167, 1235-1253.	2.9	67
107	Antifungal, Cytotoxic, and Immunomodulatory Properties of Tea Tree Oil and Its Derivative Components: Potential Role in Management of Oral Candidosis in Cancer Patients. Frontiers in Microbiology, 2012, 3, 220.	3.5	65
108	Carbohydrate Derived Fulvic Acid: An in vitro Investigation of a Novel Membrane Active Antiseptic Agent Against Candida albicans Biofilms. Frontiers in Microbiology, 2012, 3, 116.	3.5	35

#	Article	IF	CITATIONS
109	In Vitro Candida albicans Biofilm Induced Proteinase Activity and SAP8 Expression Correlates with In Vivo Denture Stomatitis Severity. Mycopathologia, 2012, 174, 11-19.	3.1	46
110	A Comparative In Vitro Study of Two Denture Cleaning Techniques as an Effective Strategy for Inhibiting <i>Candida albicans</i> Biofilms on Denture Surfaces and Reducing Inflammation. Journal of Prosthodontics, 2012, 21, 516-522.	3.7	31
111	Oral candidosis – Clinical challenges of a biofilm disease. Critical Reviews in Microbiology, 2011, 37, 328-336.	6.1	153
112	Commercial mouthwashes are more effective than azole antifungals against Candida albicans biofilms in vitro. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2011, 111, 456-460.	1.4	48
113	Aspergillus biofilms: clinical and industrial significance. FEMS Microbiology Letters, 2011, 324, 89-97.	1.8	114
114	Some biological features of Candida albicans mutants for genes coding fungal proteins containing the CFEM domain. FEMS Yeast Research, 2011, 11, 273-284.	2.3	36
115	Hsp90 Governs Dispersion and Drug Resistance of Fungal Biofilms. PLoS Pathogens, 2011, 7, e1002257.	4.7	231
116	Azole Resistance of Aspergillus fumigatus Biofilms Is Partly Associated with Efflux Pump Activity. Antimicrobial Agents and Chemotherapy, 2011, 55, 2092-2097.	3.2	135
117	Are we any closer to beating the biofilm: novel methods of biofilm control. Current Opinion in Infectious Diseases, 2010, 23, 560-566.	3.1	37
118	Hydrolytic Enzyme Production is Associated with Candida Albicans Biofilm Formation from Patients with Type 1 Diabetes. Mycopathologia, 2010, 170, 229-235.	3.1	46
119	Reducing the Incidence of Denture Stomatitis: Are Denture Cleansers Sufficient?. Journal of Prosthodontics, 2010, 19, 252-257.	3.7	59
120	Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiology Letters, 2010, 313, 96-102.	1.8	184
121	Influence of Tigecycline on Expression of Virulence Factors in Biofilm-Associated Cells of Methicillin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 380-387.	3.2	71
122	Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. International Journal of Antimicrobial Agents, 2009, 33, 374-378.	2.5	126
123	The characteristics of <i>Aspergillus fumigatus</i> mycetoma development: is this a biofilm?. Medical Mycology, 2009, 47, S120-S126.	0.7	109
124	Our Current Understanding of Fungal Biofilms. Critical Reviews in Microbiology, 2009, 35, 340-355.	6.1	429
125	Attachment of Candida albicans to denture base acrylic resin processed by three different methods. International Journal of Prosthodontics, 2009, 22, 488-9.	1.7	7
126	Formación de biopelÃculas de Candida albicans en condiciones de flujo utilizando un aparato de Robbins modificado mejorado. Revista Iberoamericana De Micologia, 2008, 25, 37-40.	0.9	40

#	Article	IF	CITATIONS
127	Phase-dependent antifungal activity against Aspergillus fumigatus developing multicellular filamentous biofilms. Journal of Antimicrobial Chemotherapy, 2008, 62, 1281-1284.	3.0	105
128	Biofilm formation by Scottish clinical isolates of Staphylococcus aureus. Journal of Medical Microbiology, 2008, 57, 1018-1023.	1.8	88
129	A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nature Protocols, 2008, 3, 1494-1500.	12.0	453
130	Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. Journal of Medical Microbiology, 2007, 56, 1205-1212.	1.8	222
131	Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA). Mycopathologia, 2007, 164, 301-306.	3.1	57
132	Candidabiofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Research, 2006, 6, 979-986.	2.3	482
133	Susceptibility to Melaleuca alternifolia (tea tree) oil of yeasts isolated from the mouths of patients with advanced cancer. Oral Oncology, 2006, 42, 487-492.	1.5	30
134	CAMP factor homologues in Propionibacterium acnes: a new protein family differentially expressed by types I and II. Microbiology (United Kingdom), 2005, 151, 1369-1379.	1.8	133
135	Quorum-Sensing Mutations Affect Attachment and Stability of Burkholderia cenocepacia Biofilms. Applied and Environmental Microbiology, 2005, 71, 5208-5218.	3.1	77
136	<i>Candida</i> Biofilms: an Update. Eukaryotic Cell, 2005, 4, 633-638.	3.4	612
137	Propionibacterium acnes Types I and II Represent Phylogenetically Distinct Groups. Journal of Clinical Microbiology, 2005, 43, 326-334.	3.9	187
138	Rapid Colorimetric Assay for Antimicrobial Susceptibility Testing of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2004, 48, 1879-1881.	3.2	117
139	Denture stomatitis: a role for Candida biofilms. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 2004, 98, 53-59.	1.4	338
140	Formation of Propionibacterium acnes biofilms on orthopaedic biomaterials and their susceptibility to antimicrobials. Biomaterials, 2003, 24, 3221-3227.	11.4	218
141	Antifungal Combinations against Candida albicans Biofilms In Vitro. Antimicrobial Agents and Chemotherapy, 2003, 47, 3657-3659.	3.2	84
142	In Vitro Pharmacodynamic Properties of Three Antifungal Agents against Preformed Candida albicans Biofilms Determined by Time-Kill Studies. Antimicrobial Agents and Chemotherapy, 2002, 46, 3634-3636.	3.2	231
143	In Vitro Activity of Caspofungin against Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2002, 46, 3591-3596.	3.2	276
144	Inhibition of <i>Candida albicans</i> Biofilm Formation by Farnesol, a Quorum-Sensing Molecule. Applied and Environmental Microbiology, 2002, 68, 5459-5463.	3.1	613

#	Article	IF	CITATIONS
145	Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. Journal of Antimicrobial Chemotherapy, 2002, 49, 973-980.	3.0	403
146	The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development inCandida albicans. FEMS Microbiology Letters, 2002, 214, 95-100.	1.8	302
147	The filamentation pathway controlled by the Efg1 regulator protein is required for normal biofilm formation and development in Candida albicans. FEMS Microbiology Letters, 2002, 214, 95-100.	1.8	7
148	Standardized Method for In Vitro Antifungal Susceptibility Testing of Candida albicans Biofilms. Antimicrobial Agents and Chemotherapy, 2001, 45, 2475-2479.	3.2	667
149	Detection of Prosthetic Hip Infection at Revision Arthroplasty by Immunofluorescence Microscopy and PCR Amplification of the Bacterial 16S rRNA Gene. Journal of Clinical Microbiology, 1999, 37, 3281-3290.	3.9	436
150	[42] Detection of prosthetic joint biofilm infection using immunological and molecular techniques. Methods in Enzymology, 1999, 310, 566-576.	1.0	30
151	Antimicrobial Susceptibility of Bacteria Isolated from Orthopedic Implants following Revision Hip Surgery. Antimicrobial Agents and Chemotherapy, 1998, 42, 3002-3005.	3.2	111
152	Screening the Tocriscreenâ"¢ bioactive compound library in search for inhibitors of <i>Candida</i> Âbiofilm formation. Apmis, 0, , .	2.0	3