Michiko K Oyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2841012/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laundry detergent promotes allergic skin inflammation and esophageal eosinophilia in mice. PLoS ONE, 2022, 17, e0268651.	2.5	9
2	Editorial: Insights Into the Etiology, Prevention, and Treatment of Food Allergy. Frontiers in Immunology, 2020, 11, 1937.	4.8	1
3	Omeprazole inhibits IgE-mediated mast cell activation and allergic inflammation induced by ingested allergen in mice. Journal of Allergy and Clinical Immunology, 2020, 146, 884-893.e5.	2.9	23
4	Influences of Maternal Factors Over Offspring Allergies and the Application for Food Allergy. Frontiers in Immunology, 2019, 10, 1933.	4.8	31
5	Immunomodulatory effects of breast milk on food allergy. Annals of Allergy, Asthma and Immunology, 2019, 123, 133-143.	1.0	66
6	Injury, dysbiosis, and filaggrin deficiency drive skin inflammation through keratinocyte IL-1α release. Journal of Allergy and Clinical Immunology, 2019, 143, 1426-1443.e6.	2.9	56
7	Maternal IgG immune complexes induce food allergen–specific tolerance in offspring. Journal of Experimental Medicine, 2018, 215, 91-113.	8.5	108
8	MyD88 signaling in T regulatory cells by endogenous ligands dampens skin inflammation in filaggrin deficient mice. Clinical Immunology, 2018, 195, 88-92.	3.2	1
9	Allergic skin sensitization promotes eosinophilic esophagitis through the IL-33–basophil axis in mice. Journal of Allergy and Clinical Immunology, 2016, 138, 1367-1380.e5.	2.9	56
10	IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. Journal of Experimental Medicine, 2016, 213, 2147-2166.	8.5	79
11	IL-33 promotes food anaphylaxis in epicutaneously sensitized mice by targeting mast cells. Journal of Allergy and Clinical Immunology, 2016, 138, 1356-1366.	2.9	157
12	Thymic stromal lymphopoietin and IL-33 promote skin inflammation and vaccinia virus replication in a mouse model of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2016, 138, 283-286.	2.9	22
13	Recent research advances in eosinophilic esophagitis. Current Opinion in Pediatrics, 2015, 27, 741-747.	2.0	7
14	The microbiota is important for IL-17A expression and neutrophil infiltration in lesional skin of Flgft/ft mice. Clinical Immunology, 2015, 156, 128-130.	3.2	12
15	Filaggrin deficiency promotes the dissemination of cutaneously inoculated vaccinia virus. Journal of Allergy and Clinical Immunology, 2015, 135, 1511-1518.e6.	2.9	15
16	Food allergy: Insights into etiology, prevention, and treatment provided by murine models. Journal of Allergy and Clinical Immunology, 2014, 133, 309-317.	2.9	96
17	IL-10 suppresses IL-17-mediated dermal inflammation and reduces the systemic burden of Vaccinia virus in a mouse model of eczema vaccinatum. Clinical Immunology, 2014, 150, 153-160.	3.2	20
18	Binding of WIP to Actin Is Essential for T Cell Actin Cytoskeleton Integrity and Tissue Homing. Molecular and Cellular Biology, 2014, 34, 4343-4354.	2.3	21

Місніко К Оуозні

#	Article	IF	CITATIONS
19	Epicutaneous sensitization results in IgE-dependent intestinal mast cell expansion and food-induced anaphylaxis. Journal of Allergy and Clinical Immunology, 2013, 131, 451-460.e6.	2.9	139
20	Leukotriene B4-Driven Neutrophil Recruitment to the Skin Is Essential for Allergic Skin Inflammation. Immunity, 2012, 37, 747-758.	14.3	169
21	Epicutaneous challenge of orally immunized mice redirects antigen-specific gut-homing T cells to the skin. Journal of Clinical Investigation, 2011, 121, 2210-2220.	8.2	49
22	Mechanical injury polarizes skin dendritic cells to elicit a TH2 response by inducing cutaneous thymic stromal lymphopoietin expression. Journal of Allergy and Clinical Immunology, 2010, 126, 976-984.e5.	2.9	257
23	Vaccinia virus inoculation in sites of allergic skin inflammation elicits a vigorous cutaneous IL-17 response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14954-14959.	7.1	43
24	Chapter 3 Cellular and Molecular Mechanisms in Atopic Dermatitis. Advances in Immunology, 2009, 102, 135-226.	2.2	207
25	Filaggrin-deficient mice exhibit TH17-dominated skin inflammation and permissiveness to epicutaneous sensitization with protein antigen. Journal of Allergy and Clinical Immunology, 2009, 124, 485-493.e1.	2.9	228
26	IL-21R is essential for epicutaneous sensitization and allergic skin inflammation in humans and mice. Journal of Clinical Investigation, 2009, 119, 47-60.	8.2	84
27	TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11875-11880.	7.1	219
28	TNF Receptor-Associated Factor 1 Expressed in Resident Lung Cells Is Required for the Development of Allergic Lung Inflammation. Journal of Immunology, 2008, 180, 1878-1885.	0.8	19
29	TSLP is important in the effector phase of allergic skin inflammation. FASEB Journal, 2008, 22, 671.6.	0.5	Ο
30	Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15817-15822.	7.1	179
31	TRAF1 regulates recruitment of lymphocytes and, to a lesser extent, neutrophils, myeloid dendritic cells and monocytes to the lung airways following lipopolysaccharide inhalation. Immunology, 2007, 120, 303-314.	4.4	21