Sajid Ali Ansari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840866/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese oxide as an effective electrode material for energy storage: a review. Environmental Chemistry Letters, 2022, 20, 283-309.	16.2	44
2	Ultrasonic assisted anchoring of Yb2O3 nanorods on In2S3 nanoflowers for norfloxacin degradation and Cr(VI) reduction in water: Kinetics and degradation pathway. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127969.	4.7	15
3	Dielectric Properties of Colossal-Dielectric-Constant Na1/2La1/2Cu3Ti4O12 Ceramics Prepared by Spark Plasma Sintering. Molecules, 2022, 27, 779.	3.8	11
4	Preparation and Characterization of Cu and Al Doped ZnO Thin Films for Solar Cell Applications. Crystals, 2022, 12, 128.	2.2	20
5	Development of Binder Free Interconnected 3D Flower of NiZn2O4 as an Advanced Electrode Materials for Supercapacitor Applications. Crystals, 2022, 12, 14.	2.2	10
6	Concentration Dependent Improved Spectroscopic Characteristics and Near White Light Emission in Boro Phosphate Glasses Doped with Holmium. Applied Sciences (Switzerland), 2022, 12, 2632.	2.5	8
7	Silver Nanoparticle Decorated on Reduced Graphene Oxide-Wrapped Manganese Oxide Nanorods as Electrode Materials for High-Performance Electrochemical Devices. Crystals, 2022, 12, 389.	2.2	13
8	One-Dimensional Nanoscale Si/Co Based on Layered Double Hydroxides towards Electrochemical Supercapacitor Electrodes. Nanomaterials, 2022, 12, 1404.	4.1	5
9	Dielectric Properties of Bi2/3Cu3Ti4O12 Ceramics Prepared by Mechanical Ball Milling and Low Temperature Conventional Sintering. Materials, 2022, 15, 3173.	2.9	3
10	Wrinkle-Shaped Nickel Sulfide Grown on Three-Dimensional Nickel Foam: A Binder-Free Electrode Designed for High-Performance Electrochemical Supercapacitor Applications. Crystals, 2022, 12, 757.	2.2	7
11	Enhanced Li+ Ionic Conduction and Relaxation Properties of Li5+2xLa3Ta2-xGaxO12 Garnets. Crystals, 2022, 12, 770.	2.2	1
12	Critical Aspects of Various Techniques for Synthesizing Metal Oxides and Fabricating Their Composite-Based Supercapacitor Electrodes: A Review. Nanomaterials, 2022, 12, 1873.	4.1	23
13	Fundamentals and recent progress of Sn-based electrode materials for supercapacitors: A comprehensive review. Journal of Energy Storage, 2022, 53, 105187.	8.1	41
14	One-pot flash combustion synthesis of Fe@NiO nanocomposites for supercapacitor applications. Ceramics International, 2021, 47, 9024-9033.	4.8	19
15	Mechanistic insights into defect chemistry and tailored photoluminescence and photocatalytic properties of aliovalent cation substituted Zn _{0.94} M _{0.06â^{^*}<i>x</i>xxxxxxx<}	1 0.784314	rgB1 ⁰ /Overlo
16	Green and Phytogenic Fabrication of Co-Doped SnO2 Using Aqueous Leaf Extract of Tradescantia spathacea for Photoantioxidant and Photocatalytic Studies. BioNanoScience, 2021, 11, 120-135.	3.5	12
17	Sustainable Bio-Energy Production in Microbial Fuel Cell Using MnO ₂ Nanoparticle-Decorated Hollow Carbon Nanofibers as Active Cathode Materials. Journal of Nanoelectronics and Optoelectronics, 2021, 16, 127-135.	0.5	5
18	Enhancement of the Supercapacitive Performance of Cobalt-tin-cyanate Layered Structures through Conversion from 2D Materials to 1D Nanofibers. Applied Sciences (Switzerland), 2021, 11, 4289.	2.5	3

#	Article	IF	CITATIONS
19	Effect of Washing on the Electrochemical Performance of a Three-Dimensional Current Collector for Energy Storage Applications. Nanomaterials, 2021, 11, 1596.	4.1	25
20	Directly grown of NiCo2S4 nanoparticles on a conducting substrate towards the high-performance counter electrode in dye-sensitized solar cell: A combined theoretical and experimental study. Solar Energy Materials and Solar Cells, 2021, 225, 111064.	6.2	18
21	Fabrication of binary SnO2/TiO2 nanocomposites under a sonication-assisted approach: Tuning of band-gap and water depollution applications under visible light irradiation. Ceramics International, 2021, 47, 15073-15081.	4.8	36
22	Graphitic‑carbon nitride based mixed-phase bismuth nanostructures: Tuned optical and structural properties with boosted photocatalytic performance for wastewater decontamination under visible-light irradiation. NanoImpact, 2021, 23, 100345.	4.5	8
23	Ag-modified SnO2-graphitic-carbon nitride nanostructures for electrochemical sensor applications. Ceramics International, 2021, 47, 23578-23589.	4.8	36
24	Manganese dioxide coupled with hollow carbon nanofiber toward high-performance electrochemical supercapacitive electrode materials. Journal of Science: Advanced Materials and Devices, 2021, 6, 472-482.	3.1	5
25	Silver Nanoparticles Embedded on Reduced Graphene Oxide@Copper Oxide Nanocomposite for High Performance Supercapacitor Applications. Materials, 2021, 14, 5032.	2.9	14
26	Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite. Applied Surface Science, 2021, 565, 150337.	6.1	62
27	Aerogel and its composites for sensing, adsorption, and photocatalysis. , 2021, , 125-144.		1
28	VO ₂ Nanostructures for Batteries and Supercapacitors: A Review. Small, 2021, 17, e2006651.	10.0	82
29	Simple fabrication and unprecedented visible light response of NiNb ₂ O ₆ /RGO heterojunctions for the degradation of emerging pollutants in water. New Journal of Chemistry, 2021, 45, 22697-22713.	2.8	7
30	Sulfur-doped-graphitic-carbon nitride (S-g-C3N4) for low cost electrochemical sensing of hydrazine. Journal of Alloys and Compounds, 2020, 816, 152522.	5.5	70
31	Effect of nitrogen doping on the catalytic activity of carbon nano-onions for the oxygen reduction reaction in microbial fuel cells. Journal of Industrial and Engineering Chemistry, 2020, 81, 269-277.	5.8	34
32	Effect of Co2+ and Ni2+ co-doping on SnO2 synthesized via phytogenic method for photoantioxidant studies and photoconversion of 4-nitrophenol. Materials Today Communications, 2020, 25, 101677.	1.9	15
33	Hydrothermally derived three-dimensional porous hollow double-walled Mn2O3 nanocubes as superior electrode materials for supercapacitor applications. Electrochimica Acta, 2020, 355, 136783.	5.2	27
34	Development of Ti/Ni Nanolayered Structures to Be a New Candidate for Energy Storage Applications. Applied Sciences (Switzerland), 2020, 10, 6935.	2,5	11
35	Synthesis of Cu-Doped Mn ₃ O ₄ @Mn-Doped CuO Nanostructured Electrode Materials by a Solution Process for High-Performance Electrochemical Pseudocapacitors. ACS Omega, 2020, 5, 22356-22366.	3.5	39
36	Photoantioxidant studies of SnO2 nanoparticles fabricated using aqueous leaf extract of Tradescantia spathacea. Solid State Sciences, 2020, 105, 106279.	3.2	33

Sajid Ali Ansari

#	Article	IF	CITATIONS
37	Effect of Ni-doping on properties of the SnO2 synthesized using Tradescantia spathacea for photoantioxidant studies. Materials Chemistry and Physics, 2020, 252, 123293.	4.0	32
38	Electrochemical synthesis of titanium nitride nanoparticles onto titanium foil for electrochemical supercapacitors with ultrafast charge/discharge. Sustainable Energy and Fuels, 2020, 4, 2480-2490.	4.9	34
39	Microbial fuel cell-assisted biogenic synthesis of gold nanoparticles and its application to energy production and hydrogen peroxide detection. Korean Journal of Chemical Engineering, 2020, 37, 1241-1250.	2.7	16
40	Na,O-co-doped-graphitic-carbon nitride (Na,O-g-C3N4) for nonenzymatic electrochemical sensing of hydrogen peroxide. Applied Surface Science, 2020, 525, 146353.	6.1	45
41	A highly sensitive poly(chrysoidine G)–gold nanoparticle composite based nitrite sensor for food safety applications. Analytical Methods, 2020, 12, 5562-5571.	2.7	11
42	Adsorption modeling and mechanistic insight of hazardous chromium on para toluene sulfonic acid immobilized-polyaniline@CNTs nanocomposites. Journal of Saudi Chemical Society, 2019, 23, 188-197.	5.2	33
43	Biofilm-Assisted Fabrication of Ag@SnO ₂ - <i>g</i> -C ₃ N ₄ Nanostructures for Visible Light-Induced Photocatalysis and Photoelectrochemical Performance. Journal of Physical Chemistry C, 2019, 123, 20936-20948.	3.1	60
44	Enhanced activity of highly conformal and layered tin sulfide (SnSx) prepared by atomic layer deposition (ALD) on 3D metal scaffold towards high performance supercapacitor electrode. Scientific Reports, 2019, 9, 10225.	3.3	62
45	Carbothermal process-derived porous N-doped carbon for flexible energy storage: Influence of carbon surface area and conductivity. Chemical Engineering Journal, 2019, 378, 122158.	12.7	19
46	Synergistically effective and highly visible light responsive SnO2-g-C3N4 nanostructures for improved photocatalytic and photoelectrochemical performance. Applied Surface Science, 2019, 495, 143432.	6.1	77
47	Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices. ACS Applied Materials & Interfaces, 2019, 11, 43608-43621.	8.0	47
48	Conducting poly(aniline blue)-gold nanoparticles composite modified fluorine-doped tin oxide electrode for sensitive and non-enzymatic electrochemical detection of glucose. Journal of Electroanalytical Chemistry, 2019, 850, 113394.	3.8	26
49	Self-assembled Cube-like Copper Oxide Derived from a Metal-Organic Framework as a High-Performance Electrochemical Supercapacitive Electrode Material. Scientific Reports, 2019, 9, 9140.	3.3	34
50	Surface Plasmon-Based Nanomaterials as Photocatalyst. Environmental Chemistry for A Sustainable World, 2019, , 173-187.	0.5	6
51	Solvothermal growth of 3D flower-like CoS@FTO as high-performance counter electrode for dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 6929-6935.	2.2	11
52	Facile route to porous polyaniline@nanodiamond-graphene based nanohybrid structures for DC electrical conductivity retention and supercapacitor applications. Journal of Polymer Research, 2019, 26, 1.	2.4	13
53	Phytogenic Synthesis of Band Gap-Narrowed ZnO Nanoparticles Using the Bulb Extract of Costus woodsonii. BioNanoScience, 2019, 9, 334-344.	3.5	37
54	Photocatalytic inactivation of <i>Escherichia coli</i> under UV light irradiation using large surface area anatase TiO ₂ quantum dots. Royal Society Open Science, 2019, 6, 191444.	2.4	16

#	Article	IF	CITATIONS
55	Bio-synthesis of finely distributed Ag nanoparticle-decorated TiO2 nanorods for sunlight-induced photoelectrochemical water splitting. Journal of Industrial and Engineering Chemistry, 2019, 69, 48-56.	5.8	14
56	Feasibility of using hollow double walled Mn2O3 nanocubes for hybrid Na-air battery. Chemical Engineering Journal, 2019, 360, 415-422.	12.7	31
57	Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO nanoparticles. Materials Science in Semiconductor Processing, 2019, 91, 194-200.	4.0	84
58	Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors. Carbon, 2019, 142, 89-98.	10.3	49
59	Simple and sustainable route for large scale fabrication of few layered molybdenum disulfide sheets towards superior adsorption of the hazardous organic pollutant. Journal of Materials Science: Materials in Electronics, 2018, 29, 7792-7800.	2.2	13
60	Lithium ion storage ability, supercapacitor electrode performance, and photocatalytic performance of tungsten disulfide nanosheets. New Journal of Chemistry, 2018, 42, 5859-5867.	2.8	39
61	Ternary Composite of Polyaniline Graphene and TiO ₂ as a Bifunctional Catalyst to Enhance the Performance of Both the Bioanode and Cathode of a Microbial Fuel Cell. Industrial & Engineering Chemistry Research, 2018, 57, 6705-6713.	3.7	40
62	Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic g-C ₃ N ₄ nanostructures towards improved photoelectrochemical performances. RSC Advances, 2018, 8, 13898-13909.	3.6	50
63	Solid-state symmetrical supercapacitor based on hierarchical flower-like nickel sulfide with shape-controlled morphological evolution. Electrochimica Acta, 2018, 268, 82-93.	5.2	59
64	Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation. Scientific Reports, 2018, 8, 1723.	3.3	91
65	Facile Synthesis of SnS ₂ Nanostructures with Different Morphologies for High-Performance Supercapacitor Applications. ACS Omega, 2018, 3, 1581-1588.	3.5	125
66	Positively Charged Gold Nanoparticles for Hydrogen Peroxide Detection. BioNanoScience, 2018, 8, 537-543.	3.5	11
67	Electrochemically active biofilm-assisted biogenic synthesis of an Ag-decorated ZnO@C core–shell ternary plasmonic photocatalyst with enhanced visible-photocatalytic activity. New Journal of Chemistry, 2018, 42, 1995-2005.	2.8	27
68	Recent progress of metal–graphene nanostructures in photocatalysis. Nanoscale, 2018, 10, 9427-9440.	5.6	89
69	Mechanochemical synthesis of melamine doped TiO2 nanoparticles for dye sensitized solar cells application. Journal of Materials Science: Materials in Electronics, 2018, 29, 9108-9116.	2.2	12
70	Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess and Biosystems Engineering, 2018, 41, 1-20.	3.4	151
71	A metal-free and non-precious multifunctional 3D carbon foam for high-energy density supercapacitors and enhanced power generation in microbial fuel cells. Journal of Industrial and Engineering Chemistry, 2018, 60, 431-440.	5.8	27
72	A polyaniline@MoS ₂ -based organic–inorganic nanohybrid for the removal of Congo red: adsorption kinetic, thermodynamic and isotherm studies. New Journal of Chemistry, 2018, 42, 18802-18809.	2.8	42

#	Article	IF	CITATIONS
73	Nanostructured Cuprous-Oxide-Based Screen-Printed Electrode for Electrochemical Sensing of Picric Acid. Journal of Electronic Materials, 2018, 47, 7505-7513.	2.2	8
74	Environmentally Sustainable Fabrication of Ag@ <i>g-</i> C ₃ N ₄ Nanostructures and Their Multifunctional Efficacy as Antibacterial Agents and Photocatalysts. ACS Applied Nano Materials, 2018, 1, 2912-2922.	5.0	142
75	Effect of Gallium doping on CdS thin film properties and corresponding Cu(InGa)Se2/CdS:Ga solar cell performance. Thin Solid Films, 2018, 660, 207-212.	1.8	21
76	Defected graphene nano-platelets for enhanced hydrophilic nature and visible light-induced photoelectrochemical performances. Journal of Physics and Chemistry of Solids, 2017, 104, 233-242.	4.0	27
77	Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr(VI) and Congo red adsorption. Journal of Colloid and Interface Science, 2017, 496, 407-415.	9.4	159
78	Simple and Large Scale Construction of MoS2-g-C3N4 Heterostructures Using Mechanochemistry for High Performance Electrochemical Supercapacitor and Visible Light Photocatalytic Applications. Scientific Reports, 2017, 7, 43055.	3.3	157
79	Growth of three-dimensional flower-like SnS ₂ on g-C ₃ N ₄ sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustainable Energy and Fuels, 2017, 1, 510-519.	4.9	59
80	Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. Journal of Colloid and Interface Science, 2017, 504, 276-282.	9.4	91
81	Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries. Electrochimica Acta, 2017, 257, 328-334.	5.2	53
82	Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New Journal of Chemistry, 2017, 41, 9314-9320.	2.8	102
83	Manganese dioxide nanorods intercalated reduced graphene oxide nanocomposite toward high performance electrochemical supercapacitive electrode materials. Journal of Colloid and Interface Science, 2017, 506, 613-619.	9.4	34
84	Ce3+-ion, Surface Oxygen Vacancy, and Visible Light-induced Photocatalytic Dye Degradation and Photocapacitive Performance of CeO2-Graphene Nanostructures. Scientific Reports, 2017, 7, 5928.	3.3	133
85	Electrosynthesis of a corn flake-like NiO nanostructure on nickel foam for polymer gel electrolyte-based high performance asymmetric supercapacitors. New Journal of Chemistry, 2017, 41, 10584-10591.	2.8	21
86	Intercalated reduced graphene oxide and its content effect on the supercapacitance performance of the three dimensional flower-like β-Ni(OH) ₂ architecture. New Journal of Chemistry, 2017, 41, 10467-10475.	2.8	20
87	Effect of polyaniline concentration on the photoconversion efficiency of nano-TiO2 based dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2017, 28, 3210-3216.	2.2	2
88	Simple and rapid synthesis of ternary polyaniline/titanium oxide/graphene by simultaneous TiO2 generation and aniline oxidation as hybrid materials for supercapacitor applications. Journal of Solid State Electrochemistry, 2017, 21, 57-68.	2.5	56
89	Metal-Free Carbon-Based Materials: Promising Electrocatalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. International Journal of Molecular Sciences, 2017, 18, 25.	4.1	67
90	Polyaniline-Functionalized TiO ₂ Nanoparticles as a Suitable Matrix for Hydroquinone Sensor. Science of Advanced Materials, 2017, 9, 2032-2038.	0.7	8

#	Article	IF	CITATIONS
91	Self-Assembled 3D Flower-Like Nickel Hydroxide Nanostructures and Their Supercapacitor Applications. Scientific Reports, 2016, 6, 27318.	3.3	127
92	Earth-abundant stable elemental semiconductor red phosphorus-based hybrids for environmental remediation and energy storage applications. RSC Advances, 2016, 6, 44616-44629.	3.6	56
93	CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications. Journal of Colloid and Interface Science, 2016, 482, 221-232.	9.4	140
94	Facile and single-step route towards ZnO@C core–shell nanoparticles as an oxygen vacancy induced visible light active photocatalyst using the thermal decomposition of Zn(an)2(NO3)2. RSC Advances, 2016, 6, 70644-70652.	3.6	13
95	Facile and Scale Up Synthesis of Red Phosphorus-Graphitic Carbon Nitride Heterostructures for Energy and Environment Applications. Scientific Reports, 2016, 6, 27713.	3.3	56
96	Facile route to a conducting ternary polyaniline@TiO ₂ /GN nanocomposite for environmentally benign applications: photocatalytic degradation of pollutants and biological activity. RSC Advances, 2016, 6, 111308-111317.	3.6	45
97	Electrochemically synthesized sulfur-doped graphene as a superior metal-free cathodic catalyst for oxygen reduction reaction in microbial fuel cells. RSC Advances, 2016, 6, 103446-103454.	3.6	31
98	Highly Visible Light Responsive, Narrow Band gap TiO2 Nanoparticles Modified by Elemental Red Phosphorus for Photocatalysis and Photoelectrochemical Applications. Scientific Reports, 2016, 6, 25405.	3.3	222
99	Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated temperature. Composites Part B: Engineering, 2016, 87, 281-290.	12.0	94
100	Metal free earth abundant elemental red phosphorus: a new class of visible light photocatalyst and photoelectrode materials. Physical Chemistry Chemical Physics, 2016, 18, 3921-3928.	2.8	74
101	Simultaneous sulfur doping and exfoliation of graphene from graphite using an electrochemical method for supercapacitor electrode materials. Journal of Materials Chemistry A, 2016, 4, 233-240.	10.3	151
102	Nitrogen-doped titanium dioxide (N-doped TiO ₂) for visible light photocatalysis. New Journal of Chemistry, 2016, 40, 3000-3009.	2.8	549
103	Fabrication of WO ₃ nanorods on graphene nanosheets for improved visible light-induced photocapacitive and photocatalytic performance. RSC Advances, 2016, 6, 20824-20833.	3.6	121
104	Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell. RSC Advances, 2016, 6, 25799-25807.	3.6	44
105	Fibrous polyaniline@manganese oxide nanocomposites as supercapacitor electrode materials and cathode catalysts for improved power production in microbial fuel cells. Physical Chemistry Chemical Physics, 2016, 18, 9053-9060.	2.8	133
106	Route to High Surface Area, Mesoporosity of Polyaniline–Titanium Dioxide Nanocomposites via One Pot Synthesis for Energy Storage Applications. Industrial & Engineering Chemistry Research, 2016, 55, 116-124.	3.7	70
107	Anchoring Mechanism of ZnO Nanoparticles on Graphitic Carbon Nanofiber Surfaces through a Modified Coâ€Precipitation Method to Improve Interfacial Contact and Photocatalytic Performance. ChemPhysChem, 2015, 16, 3214-3232.	2.1	37
108	Silver nanoparticles and defect-induced visible light photocatalytic and photoelectrochemical performance of Ag@m-TiO2 nanocomposite. Solar Energy Materials and Solar Cells, 2015, 141, 162-170.	6.2	126

#	Article	IF	CITATIONS
109	Improved electrode performance in microbial fuel cells and the enhanced visible light-induced photoelectrochemical behaviour of PtO @M-TiO2 nanocomposites. Ceramics International, 2015, 41, 9131-9139.	4.8	39
110	Electrical conductivity, optical property and ammonia sensing studies on HCl Doped Au@polyaniline nanocomposites. Electronic Materials Letters, 2015, 11, 1-6.	2.2	28
111	Visible light-induced enhanced photoelectrochemical and photocatalytic studies of gold decorated SnO ₂ nanostructures. New Journal of Chemistry, 2015, 39, 2758-2766.	2.8	101
112	Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Advances, 2015, 5, 26897-26904.	3.6	80
113	Polythiophene nanocomposites for photodegradation applications: Past, present and future. Journal of Saudi Chemical Society, 2015, 19, 494-504.	5.2	91
114	DC electrical conductivity retention and electrical compensation of polyaniline by TiO2 at higher loading percentages in polyaniline@TiO2 nanocomposites. Electronic Materials Letters, 2015, 11, 559-564.	2.2	11
115	Eco-friendly, catalyst-free synthesis of highly pure carbon spheres using vegetable oils as a renewable source and their application as a template for ZnO and MgO hollow spheres. RSC Advances, 2015, 5, 57114-57121.	3.6	5
116	Facile strategy for the synthesis of non-covalently bonded and para-toluene sulfonic acid-functionalized fibrous polyaniline@graphene–PVC nanocomposite for the removal of Congo red. New Journal of Chemistry, 2015, 39, 7004-7011.	2.8	21
117	Simple route for the generation of differently functionalized PVC@graphene–polyaniline fiber bundles for the removal of Congo red from wastewater. RSC Advances, 2015, 5, 61486-61494.	3.6	38
118	Simple route for gram synthesis of less defective few layered graphene and its electrochemical performance. RSC Advances, 2015, 5, 44920-44927.	3.6	38
119	Cold nanoparticles-sensitized wide and narrow band gap TiO ₂ for visible light applications: a comparative study. New Journal of Chemistry, 2015, 39, 4708-4715.	2.8	90
120	Facile electrochemical assisted synthesis of ZnO/graphene nanosheets with enhanced photocatalytic activity. RSC Advances, 2015, 5, 97788-97797.	3.6	39
121	Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New Journal of Chemistry, 2015, 39, 8121-8129.	2.8	130
122	Electrically conductive polyaniline sensitized defective-TiO ₂ for improved visible light photocatalytic and photoelectrochemical performance: a synergistic effect. New Journal of Chemistry, 2015, 39, 8381-8388.	2.8	42
123	Ammonia sensing and DC electrical conductivity studies of p-toluene sulfonic acid doped cetyltrimethylammonium bromide assisted V2O5@polyaniline composite nanofibers. Journal of Industrial and Engineering Chemistry, 2015, 22, 147-152.	5.8	23
124	Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect. Journal of Industrial and Engineering Chemistry, 2014, 20, 1584-1590.	5.8	234
125	Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. Journal of Industrial and Engineering Chemistry, 2014, 20, 1602-1607.	5.8	104
126	Band gap engineering of CeO ₂ nanostructure using an electrochemically active biofilm for visible light applications. RSC Advances, 2014, 4, 16782-16791.	3.6	266

#	Article	IF	CITATIONS
127	pTSA doped conducting graphene/polyaniline nanocomposite fibers: Thermoelectric behavior and electrode analysis. Chemical Engineering Journal, 2014, 242, 155-161.	12.7	73
128	Escheriosome-mediated cytosolic delivery of PLK1-specific siRNA: potential in treatment of liver cancer in BALB/c mice. Nanomedicine, 2014, 9, 407-420.	3.3	14
129	Band gap engineered TiO ₂ nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. Journal of Materials Chemistry A, 2014, 2, 637-644.	10.3	751
130	Ammonia vapor sensing and electrical properties of fibrous multi-walled carbon nanotube/polyaniline nanocomposites prepared in presence of cetyl-trimethylammonium bromide. Journal of Industrial and Engineering Chemistry, 2014, 20, 2010-2017.	5.8	41
131	Enhanced thermoelectric performance and ammonia sensing properties of sulfonated polyaniline/graphene thin films. Materials Letters, 2014, 114, 159-162.	2.6	46
132	Enhanced thermoelectric behaviour and visible light activity of Ag@TiO ₂ /polyaniline nanocomposite synthesized by biogenic-chemical route. RSC Advances, 2014, 4, 23713-23719.	3.6	75
133	Electrochemically active biofilm assisted synthesis of Ag@CeO2 nanocomposites for antimicrobial activity, photocatalysis and photoelectrodes. Journal of Colloid and Interface Science, 2014, 431, 255-263.	9.4	102
134	Highly photoactive SnO ₂ nanostructures engineered by electrochemically active biofilm. New Journal of Chemistry, 2014, 38, 2462-2469.	2.8	66
135	Indole oxidation enhances electricity production in an E. coli-catalyzed microbial fuel cell. Biotechnology and Bioprocess Engineering, 2014, 19, 126-131.	2.6	20
136	Mixed Culture Electrochemically Active Biofilms and their Microscopic and Spectroelectrochemical Studies. ACS Sustainable Chemistry and Engineering, 2014, 2, 423-432.	6.7	46
137	Defect-Induced Band Gap Narrowed CeO ₂ Nanostructures for Visible Light Activities. Industrial & Engineering Chemistry Research, 2014, 53, 9754-9763.	3.7	278
138	Biogenic Fabrication of Au@CeO ₂ Nanocomposite with Enhanced Visible Light Activity. Journal of Physical Chemistry C, 2014, 118, 9477-9484.	3.1	123
139	Enhanced Thermal Stability under DC Electrical Conductivity Retention and Visible Light Activity of Ag/TiO ₂ @Polyaniline Nanocomposite Film. ACS Applied Materials & Interfaces, 2014, 6, 8124-8133.	8.0	81
140	Visible light-driven photocatalytic and photoelectrochemical studies of Ag–SnO ₂ nanocomposites synthesized using an electrochemically active biofilm. RSC Advances, 2014, 4, 26013-26021.	3.6	103
141	Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Materials Science and Engineering C, 2013, 33, 4692-4699.	7.3	70
142	Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013, 5, 9238.	5.6	523
143	Cold Nanoparticles Produced Inâ€Situ Mediate Bioelectricity and Hydrogen Production in a Microbial Fuel Cell by Quantized Capacitance Charging. ChemSusChem, 2013, 6, 246-250.	6.8	34
144	Enhanced optical, visible light catalytic and electrochemical properties of Au@TiO2 nanocomposites. Journal of Industrial and Engineering Chemistry, 2013, 19, 1845-1850.	5.8	29

#	Article	IF	CITATIONS
145	Biogenic Synthesis, Photocatalytic, and Photoelectrochemical Performance of Ag–ZnO Nanocomposite. Journal of Physical Chemistry C, 2013, 117, 27023-27030.	3.1	368
146	Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. International Journal of Hydrogen Energy, 2013, 38, 5243-5250.	7.1	70
147	Zinc Oxide Nanoparticles Promote the Aggregation of Concanavalin A. International Journal of Peptide Research and Therapeutics, 2013, 19, 135-146.	1.9	12
148	Polyaniline-assisted silver nanoparticles: a novel support for the immobilization of α-amylase. Applied Microbiology and Biotechnology, 2013, 97, 1513-1522.	3.6	49
149	Catalytic role of Au@TiO2 nanocomposite on enhanced degradation of an azo-dye by electrochemically active biofilms: a quantized charging effect. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	4
150	Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach. Nanoscale, 2013, 5, 4427.	5.6	219
151	Simultaneous Enhancement of Methylene Blue Degradation and Power Generation in a Microbial Fuel Cell by Gold Nanoparticles. Industrial & Engineering Chemistry Research, 2013, 52, 8174-8181.	3.7	81
152	Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnology Advances, 2013, 31, 915-924.	11.7	57
153	Band gap narrowing of titanium dioxide (TiO2) nanocrystals by electrochemically active biofilms and their visible light activity. Nanoscale, 2013, 5, 6323.	5.6	155
154	Synthesis of Positively Charged Gold Nanoparticles Using a Stainless-Steel Mesh. Journal of Nanoscience and Nanotechnology, 2013, 13, 6140-6144.	0.9	15
155	Positively Charged Gold Nanoparticles Synthesized by Electrochemically Active Biofilm—A Biogenic Approach. Journal of Nanoscience and Nanotechnology, 2013, 13, 6079-6085.	0.9	44
156	A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	37
157	Temperature dependence anomalous dielectric relaxation in Co doped ZnO nanoparticles. Materials Research Bulletin, 2012, 47, 4161-4168.	5.2	64
158	SYNTHESIS, STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF <i>IN-SITU</i> SYNTHESIZED POLYANILINE/SILVER NANOCOMPOSITES. Functional Materials Letters, 2012, 05, 1250026.	1.2	36
159	Investigation on structural, optical and dielectric properties of Co doped ZnO nanoparticles synthesized by gel-combustion route. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 428-435.	3.5	192
160	Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chemistry, 2011, 13, 1482.	9.0	78
161	3â€Indolylacetonitrile Decreases <i>Escherichia coli</i> O157:H7 Biofilm Formation and <i>Pseudomonas aeruginosa</i> Virulence. Environmental Microbiology, 2011, 13, 62-73.	3.8	166