List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2840658/publications.pdf Version: 2024-02-01

169	7,949	³¹⁹⁴⁹ 53	⁵⁸⁵⁴⁹ 82
papers	citations	h-index	g-index
171	171	171	4725
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Drop Impact on Superheated Surfaces. Physical Review Letters, 2012, 108, 036101.	2.9	378
2	High–Reynolds Number Taylor-Couette Turbulence. Annual Review of Fluid Mechanics, 2016, 48, 53-80.	10.8	259
3	On the spreading of impacting drops. Journal of Fluid Mechanics, 2016, 805, 636-655.	1.4	220
4	Toward 3D Printing of Pure Metals by Laserâ€Induced Forward Transfer. Advanced Materials, 2015, 27, 4087-4092.	11.1	217
5	Droplet impact on superheated micro-structured surfaces. Soft Matter, 2013, 9, 3272.	1.2	216
6	Maximal Air Bubble Entrainment at Liquid-Drop Impact. Physical Review Letters, 2012, 109, 264501.	2.9	172
7	Flow Reversals in Thermally Driven Turbulence. Physical Review Letters, 2010, 105, 034503.	2.9	165
8	Control of slippage with tunable bubble mattresses. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8422-8426.	3.3	157
9	Dynamics of high-speed micro-drop impact: numerical simulations and experiments at frame-to-frame times below 100 ns. Soft Matter, 2015, 11, 1708-1722.	1.2	155
10	Dynamic Leidenfrost Effect: Relevant Time and Length Scales. Physical Review Letters, 2016, 116, 064501.	2.9	150
11	Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Physical Review E, 2012, 85, 026315.	0.8	128
12	Air entrainment during impact of droplets on liquid surfaces. Journal of Fluid Mechanics, 2013, 726, .	1.4	125
13	Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Physical Review E, 2003, 68, 066303.	0.8	120
14	Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell. Physical Review E, 2005, 72, 026302.	0.8	115
15	Torque Scaling in Turbulent Taylor-Couette Flow with Co- and Counterrotating Cylinders. Physical Review Letters, 2011, 106, 024502.	2.9	115
16	Formation of surface nanodroplets under controlled flow conditions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9253-9257.	3.3	113
17	On bubble clustering and energy spectra in pseudo-turbulence. Journal of Fluid Mechanics, 2010, 650, 287-306.	1.4	107
18	Multiple states in highly turbulent Taylor–Couette flow. Nature Communications, 2014, 5, 3820.	5.8	107

#	Article	IF	CITATIONS
19	Azimuthal Symmetry, Flow Dynamics, and Heat Transport in Turbulent Thermal Convection in a Cylinder with an Aspect Ratio of 0.5. Physical Review Letters, 2005, 95, 074502.	2.9	96
20	Phase diagram for droplet impact on superheated surfaces. Journal of Fluid Mechanics, 2015, 779, .	1.4	95
21	Morphological Evolution of Thermal Plumes in Turbulent Rayleigh-Bénard Convection. Physical Review Letters, 2007, 98, 074501.	2.9	92
22	Needle-free injection into skin and soft matter with highly focused microjets. Lab on A Chip, 2013, 13, 1357.	3.1	92
23	Bubbly and Buoyant Particle–Laden Turbulent Flows. Annual Review of Condensed Matter Physics, 2020, 11, 529-559.	5.2	92
24	Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2008, 605, 79-113.	1.4	90
25	Fast Dynamics of Water Droplets Freezing from the Outside In. Physical Review Letters, 2017, 118, 084101.	2.9	89
26	Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2017, 814, 165-184.	1.4	88
27	Fingering patterns during droplet impact on heated surfaces. Soft Matter, 2015, 11, 3298-3303.	1.2	87
28	Optimizing cell viability in droplet-based cell deposition. Scientific Reports, 2015, 5, 11304.	1.6	87
29	Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio. Journal of Fluid Mechanics, 2005, 542, 165.	1.4	86
30	Three-dimensional Lagrangian VoronoÃ⁻ analysis for clustering of particles and bubbles in turbulence. Journal of Fluid Mechanics, 2012, 693, 201-215.	1.4	83
31	The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor–Couette flow. Journal of Fluid Mechanics, 2013, 722, 317-347.	1.4	81
32	How surface roughness reduces heat transport for small roughness heights in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2018, 836, .	1.4	80
33	The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces. Soft Matter, 2014, 10, 2102-2109.	1.2	78
34	Drop Shaping by Laser-Pulse Impact. Physical Review Applied, 2015, 3, .	1.5	76
35	Oscillations of the large-scale circulation in turbulent Rayleigh–Bénard convection: the sloshing mode and its relationship with the torsional mode. Journal of Fluid Mechanics, 2009, 630, 367-390. 	1.4	74
36	Ultimate Turbulent Taylor-Couette Flow. Physical Review Letters, 2012, 108, 024501.	2.9	74

#	Article	IF	CITATIONS
37	Cascades of Velocity and Temperature Fluctuations in Buoyancy-Driven Thermal Turbulence. Physical Review Letters, 2006, 97, 144504.	2.9	73
38	Optimal Taylor–Couette turbulence. Journal of Fluid Mechanics, 2012, 706, 118-149.	1.4	73
39	Microdroplet impact at very high velocity. Soft Matter, 2012, 8, 10732.	1.2	70
40	Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature. International Journal of Heat and Mass Transfer, 2016, 97, 101-109.	2.5	70
41	Printing Functional 3D Microdevices by Laserâ€Induced Forward Transfer. Small, 2017, 13, 1602553.	5.2	70
42	Energy spectra and bubble velocity distributions in pseudo-turbulence: Numerical simulations vs. experiments. International Journal of Multiphase Flow, 2011, 37, 1093-1098.	1.6	67
43	Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Science Advances, 2020, 6, eaaz8239.	4.7	67
44	Bubble Drag Reduction Requires Large Bubbles. Physical Review Letters, 2016, 117, 104502.	2.9	65
45	Drop Fragmentation at Impact onto a Bath of an Immiscible Liquid. Physical Review Letters, 2013, 110, 264503.	2.9	64
46	Crystal Nucleation by Laser-Induced Cavitation. Crystal Growth and Design, 2011, 11, 2311-2316.	1.4	62
47	Highly focused supersonic microjets: numerical simulations. Journal of Fluid Mechanics, 2013, 719, 587-605.	1.4	62
48	Energy spectra in turbulent bubbly flows. Journal of Fluid Mechanics, 2016, 791, 174-190.	1.4	62
49	Surface Nanobubbles Nucleate Microdroplets. Physical Review Letters, 2014, 112, 144503.	2.9	61
50	Optimal Taylor–Couette flow: radius ratio dependence. Journal of Fluid Mechanics, 2014, 747, 1-29.	1.4	61
51	The quasi-static growth of CO ₂ Âbubbles. Journal of Fluid Mechanics, 2014, 741, .	1.4	60
52	The Twente turbulent Taylor–Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders. Review of Scientific Instruments, 2011, 82, 025105.	0.6	59
53	How bulk nanobubbles are stable over a wide range of temperatures. Journal of Colloid and Interface Science, 2021, 596, 184-198.	5.0	58
54	The role of Stewartson and Ekman layers in turbulent rotating Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2011, 688, 422-442.	1.4	57

#	Article	IF	CITATIONS
55	Growth and collapse of a vapour bubble in a microtube: the role of thermal effects. Journal of Fluid Mechanics, 2009, 632, 5-16.	1.4	53
56	Growing bubbles in a slightly supersaturated liquid solution. Review of Scientific Instruments, 2013, 84, 065111.	0.6	52
57	Microbubbles and Microparticles are Not Faithful Tracers of Turbulent Acceleration. Physical Review Letters, 2016, 117, 024501.	2.9	52
58	Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. Journal of Fluid Mechanics, 2017, 825, 1091-1112.	1.4	52
59	Highly Focused Supersonic Microjets. Physical Review X, 2012, 2, .	2.8	51
60	Final fate of a Leidenfrost droplet: Explosion or takeoff. Science Advances, 2019, 5, eaav8081.	4.7	51
61	Bouncing drop on liquid film: Dynamics of interfacial gas layer. Physics of Fluids, 2019, 31, .	1.6	51
62	Angular momentum transport and turbulence in laboratory models of Keplerian flows. Astronomy and Astrophysics, 2012, 547, A64.	2.1	48
63	Controlling Heat Transport and Flow Structures in Thermal Turbulence Using Ratchet Surfaces. Physical Review Letters, 2018, 120, 044501.	2.9	48
64	Logarithmic Boundary Layers in Strong Taylor-Couette Turbulence. Physical Review Letters, 2013, 110, 264501.	2.9	46
65	Scaling of the Reynolds number in turbulent thermal convection. Physical Review E, 2005, 72, 067302.	0.8	45
66	lon adsorption stabilizes bulk nanobubbles. Journal of Colloid and Interface Science, 2022, 606, 1380-1394.	5.0	43
67	Experimental investigation of homogeneity, isotropy, and circulation of the velocity field in buoyancy-driven turbulence. Journal of Fluid Mechanics, 2008, 598, 361-372.	1.4	42
68	Ejection Regimes in Picosecond Laser-Induced Forward Transfer of Metals. Physical Review Applied, 2015, 3, .	1.5	42
69	Wall roughness induces asymptotic ultimate turbulence. Nature Physics, 2018, 14, 417-423.	6.5	40
70	Wake-Driven Dynamics of Finite-Sized Buoyant Spheres in Turbulence. Physical Review Letters, 2015, 115, 124501.	2.9	39
71	Bouncing-to-Merging Transition in Drop Impact on Liquid Film: Role of Liquid Viscosity. Langmuir, 2018, 34, 2654-2662.	1.6	39
72	Leidenfrost drops cooling surfaces: theory and interferometric measurement. Journal of Fluid Mechanics, 2017, 827, 614-639	1.4	38

#	Article	IF	CITATIONS
73	Lagrangian single-particle turbulent statistics through the Hilbert-Huang transform. Physical Review E, 2013, 87, 041003.	0.8	35
74	How microstructures affect air film dynamics prior to drop impact. Soft Matter, 2014, 10, 3703.	1.2	35
75	Hemodynamic comparison of stent configurations used for aortoiliac occlusive disease. Journal of Vascular Surgery, 2017, 66, 251-260.e1.	0.6	34
76	Nonmonotonic response of drop impacting on liquid film: mechanism and scaling. Soft Matter, 2016, 12, 4521-4529.	1.2	33
77	Flutter to tumble transition of buoyant spheres triggered by rotational inertia changes. Nature Communications, 2018, 9, 1792.	5.8	33
78	Self-sustained biphasic catalytic particle turbulence. Nature Communications, 2019, 10, 3333.	5.8	33
79	From Rayleigh–Bénard convection to porous-media convection: how porosity affects heat transfer and flow structure. Journal of Fluid Mechanics, 2020, 895, .	1.4	32
80	Measuring thin films using quantitative frustrated total internal reflection (FTIR). European Physical Journal E, 2017, 40, 54.	0.7	31
81	Experimental investigation of heat transport in homogeneous bubbly flow. Journal of Fluid Mechanics, 2018, 845, 226-244.	1.4	31
82	Dispersion of Air Bubbles in Isotropic Turbulence. Physical Review Letters, 2018, 121, 054501.	2.9	30
83	Lagrangian statistics of light particles in turbulence. Physics of Fluids, 2012, 24, .	1.6	29
84	Supergravitational turbulent thermal convection. Science Advances, 2020, 6, .	4.7	29
85	Salinity transfer in bounded double diffusive convection. Journal of Fluid Mechanics, 2015, 768, 476-491.	1.4	27
86	How gravity and size affect the acceleration statistics of bubbles in turbulence. New Journal of Physics, 2012, 14, 105017.	1.2	26
87	Applying laser Doppler anemometry inside a Taylor–Couette geometry using a ray-tracer to correct for curvature effects. European Journal of Mechanics, B/Fluids, 2012, 36, 115-119.	1.2	25
88	Levitation of a drop over a moving surface. Journal of Fluid Mechanics, 2013, 733, .	1.4	25
89	Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow. Physical Review Fluids, 2016, 1, .	1.0	25
90	Urban Land Development for Industrial and Commercial Use: A Case Study of Beijing. Sustainability, 2016, 8, 1323.	1.6	24

#	Article	IF	CITATIONS
91	Translational and rotational dynamics of a large buoyant sphere in turbulence. Experiments in Fluids, 2016, 57, 1.	1.1	23
92	Measured oscillations of the velocity and temperature fields in turbulent Rayleigh-Bénard convection in a rectangular cell. Physical Review E, 2007, 76, 036301.	0.8	21
93	Velocity profiles in strongly turbulent Taylor-Couette flow. Physics of Fluids, 2014, 26, .	1.6	21
94	Heat-flux enhancement by vapour-bubble nucleation in Rayleigh–Bénard turbulence. Journal of Fluid Mechanics, 2016, 787, 331-366.	1.4	21
95	Mass and Moment of Inertia Govern the Transition in the Dynamics and Wakes of Freely Rising and Falling Cylinders. Physical Review Letters, 2017, 119, 054501.	2.9	21
96	Imaging of the Ejection Process of Nanosecond Laser-induced forward Transfer of Gold. Journal of Laser Micro Nanoengineering, 2015, 10, 154-157.	0.4	21
97	Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection. Physical Review E, 2012, 86, 056315.	0.8	20
98	On explosive boiling of a multicomponent Leidenfrost drop. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	19
99	Kinematics and dynamics of freely rising spheroids at high Reynolds numbers. Journal of Fluid Mechanics, 2021, 912, .	1.4	18
100	How the growth of ice depends on the fluid dynamics underneath. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
101	Boiling regimes of impacting drops on a heated substrate under reduced pressure. Physical Review Fluids, 2018, 3, .	1.0	18
102	Quantifying Cell Adhesion through Impingement of a Controlled Microjet. Biophysical Journal, 2015, 108, 23-31.	0.2	17
103	Bubbly drag reduction using a hydrophobic inner cylinder in Taylor–Couette turbulence. Journal of Fluid Mechanics, 2020, 883, .	1.4	17
104	Water entry of spheres into a rotating liquid. Journal of Fluid Mechanics, 2021, 912, .	1.4	17
105	Deactivation of Microbubble Nucleation Sites by Alcohol–Water Exchange. Langmuir, 2013, 29, 9979-9984.	1.6	16
106	The clustering morphology of freely rising deformable bubbles. Journal of Fluid Mechanics, 2013, 721, .	1.4	16
107	Experimental techniques for turbulent Taylor–Couette flow and Rayleigh–Bénard convection. Nonlinearity, 2014, 27, R89-R121.	0.6	16
108	Taylor–Couette turbulence at radius ratio : scaling, flow structures and plumes. Journal of Fluid Mechanics, 2016, 799, 334-351.	1.4	16

CHAO SUN

#	Article	IF	CITATIONS
109	Origin of spray formation during impact on heated surfaces. Soft Matter, 2017, 13, 7514-7520.	1.2	16
110	Periodically driven Taylor–Couette turbulence. Journal of Fluid Mechanics, 2018, 846, 834-845.	1.4	16
111	Global and local statistics in turbulent emulsions. Journal of Fluid Mechanics, 2021, 912, .	1.4	16
112	Drag and lift forces on a counter-rotating cylinder in rotating flow. Journal of Fluid Mechanics, 2010, 664, 150-173.	1.4	15
113	Spreading and oscillation dynamics of drop impacting liquid film. Journal of Fluid Mechanics, 2019, 881, 859-871.	1.4	15
114	Robustness of heat transfer in confined inclined convection at high Prandtl number. Physical Review E, 2019, 99, 013108.	0.8	15
115	Leidenfrost drop impact on inclined superheated substrates. Physics of Fluids, 2020, 32, .	1.6	15
116	A hybrid VOF-IBM method for the simulation of freezing liquid films and freezing drops. Journal of Computational Physics, 2021, 432, 110160.	1.9	15
117	Experimental investigation of heat transport in inhomogeneous bubbly flow. Chemical Engineering Science, 2019, 198, 260-267.	1.9	14
118	Controlling secondary flow in Taylor–Couette turbulence through spanwise-varying roughness. Journal of Fluid Mechanics, 2020, 883, .	1.4	14
119	Azimuthal velocity profiles in Rayleigh-stable Taylor–Couette flow and implied axial angular momentum transport. Journal of Fluid Mechanics, 2015, 774, 342-362.	1.4	13
120	Turbulent Rayleigh–Bénard convection in an annular cell. Journal of Fluid Mechanics, 2019, 869, .	1.4	13
121	Mixing induced by a bubble swarm rising through incident turbulence. International Journal of Multiphase Flow, 2019, 114, 316-322.	1.6	13
122	Turbulence strength in ultimate Taylor–Couette turbulence. Journal of Fluid Mechanics, 2018, 836, 397-412.	1.4	12
123	Rotation of anisotropic particles in Rayleigh–Bénard turbulence. Journal of Fluid Mechanics, 2020, 901, .	1.4	12
124	Anisotropic particles in two-dimensional convective turbulence. Physics of Fluids, 2020, 32, 023305.	1.6	12
125	Catastrophic Phase Inversion in High-Reynolds-Number Turbulent Taylor-Couette Flow. Physical Review Letters, 2021, 126, 064501.	2.9	12
126	Multi-point local temperature measurements inside the conducting plates in turbulent thermal convection. Journal of Fluid Mechanics, 2007, 570, 479-489.	1.4	11

CHAO SUN

#	Article	IF	CITATIONS
127	Wall forces on a sphere in a rotating liquid-filled cylinder. Physics of Fluids, 2013, 25, .	1.6	11
128	Air cavities at the inner cylinder of turbulent Taylor–Couette flow. International Journal of Multiphase Flow, 2018, 105, 264-273.	1.6	11
129	Onset of fully compressible convection in a rapidly rotating spherical shell. Journal of Fluid Mechanics, 2019, 873, 1090-1115.	1.4	11
130	Convective heat transfer along ratchet surfaces in vertical natural convection. Journal of Fluid Mechanics, 2019, 873, 1055-1071.	1.4	10
131	Experimental study of the heat transfer properties of self-sustained biphasic thermally driven turbulence. International Journal of Heat and Mass Transfer, 2020, 152, 119515.	2.5	10
132	Coriolis effect on centrifugal buoyancy-driven convection in a thin cylindrical shell. Journal of Fluid Mechanics, 2021, 910, .	1.4	10
133	Ice front shaping by upward convective current. Physical Review Fluids, 2021, 6, .	1.0	10
134	Statistical characterization of thermal plumes in turbulent thermal convection. Physical Review Fluids, 2016, 1, .	1.0	10
135	Equilibrium states of the ice-water front in a differentially heated rectangular cell ^(a) . Europhysics Letters, 2021, 135, 54001.	0.7	10
136	Spectra and structure functions of the temperature and velocity fields in supergravitational thermal turbulence. Physics of Fluids, 2022, 34, .	1.6	9
137	Statistics of turbulent fluctuations in counter-rotating Taylor-Couette flows. Physical Review E, 2013, 88, 063001.	0.8	8
138	Dynamics of bouncing-versus-merging response in jet collision. Physical Review E, 2015, 92, 023024.	0.8	8
139	Electric field makes Leidenfrost droplets take a leap. Soft Matter, 2016, 12, 9622-9632.	1.2	8
140	Finite-sized rigid spheres in turbulent Taylor–Couette flow: effect on the overall drag. Journal of Fluid Mechanics, 2018, 850, 246-261.	1.4	8
141	Role of the large-scale structures in spanwise rotating plane Couette flow with multiple states. Physical Review Fluids, 2019, 4, .	1.0	8
142	How sodium chloride extends lifetime of bulk nanobubbles in water. Soft Matter, 2022, 18, 2968-2978.	1.2	8
143	Statistics of rigid fibers in strongly sheared turbulence. Physical Review Fluids, 2019, 4, .	1.0	7
144	Effects of radius ratio on annular centrifugal Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2022, 930, .	1.4	7

#	Article	IF	CITATIONS
145	How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. Journal of Fluid Mechanics, 2022, 937, .	1.4	7
146	Tribonucleation of bubbles. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10089-10094.	3.3	6
147	3D Printing: Toward 3D Printing of Pure Metals by Laser-Induced Forward Transfer (Adv. Mater.) Tj ETQq1 1 0.784	314 rgBT 11.1	/Overlock 1(
148	Vapour-bubble nucleation and dynamics in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2016, 795, 60-95.	1.4	6
149	Drag reduction in boiling Taylor–Couette turbulence. Journal of Fluid Mechanics, 2019, 881, 104-118.	1.4	6
150	Double maxima of angular momentum transport in small gap Taylor–Couette turbulence. Journal of Fluid Mechanics, 2020, 900, .	1.4	6
151	Heat transfer and flow structure of two-dimensional thermal convection over ratchet surfaces. Journal of Hydrodynamics, 2021, 33, 970-978.	1.3	6
152	The boiling Twente Taylor-Couette (BTTC) facility: Temperature controlled turbulent flow between independently rotating, coaxial cylinders. Review of Scientific Instruments, 2015, 86, 065108.	0.6	5
153	3D spherical-cap fitting procedure for (truncated) sessile nano- and micro-droplets & -bubbles. European Physical Journal E, 2016, 39, 106.	0.7	5
154	The influence of wall roughness on bubble drag reduction in Taylor–Couette turbulence. Journal of Fluid Mechanics, 2018, 851, 436-446.	1.4	5
155	Statistics, plumes and azimuthally travelling waves in ultimate Taylor–Couette turbulentÂvortices. Journal of Fluid Mechanics, 2019, 876, 733-765.	1.4	5
156	Twente mass and heat transfer water tunnel: Temperature controlled turbulent multiphase channel flow with heat and mass transfer. Review of Scientific Instruments, 2019, 90, 075117.	0.6	5
157	Scaling of maximum probability density function of velocity increments in turbulent Rayleigh-Bénard convection. Journal of Hydrodynamics, 2014, 26, 351-362.	1.3	4
158	Rotational dynamics of bottom-heavy rods in turbulence from experiments and numerical simulations. Theoretical and Applied Mechanics Letters, 2021, 11, 100227.	1.3	4
159	Lagrangian dynamics and heat transfer in porous-media convection. Journal of Fluid Mechanics, 2021, 917, .	1.4	4
160	Self-similar decay of high Reynolds number Taylor-Couette turbulence. Physical Review Fluids, 2016, 1, .	1.0	4
161	Rough-wall turbulent Taylor-Couette flow: The effect of the rib height. European Physical Journal E, 2018, 41, 125.	0.7	3
162	Statistics and Scaling of the Velocity Field in Turbulent Thermal Convection. , 2005, , 163-170.		2

#	Article	IF	CITATIONS
163	High-resolution imaging of ejection dynamics in laser-induced forward transfer. Proceedings of SPIE, 2014, , .	0.8	2
164	Accumulation and alignment of elongated gyrotactic swimmers in turbulence. Physics of Fluids, 2022, 34, 033303.	1.6	2
165	Micro-droplet nucleation through solvent exchange in a turbulent buoyant jet. Journal of Fluid Mechanics, 2022, 943, .	1.4	2
166	Effect of axially varying sandpaper roughness on bubbly drag reduction in Taylor–Couette turbulence. International Journal of Multiphase Flow, 2020, 132, 103434.	1.6	1
167	Large-scale flow and Reynolds numbers in the presence of boiling in locally heated turbulent convection. Physical Review Fluids, 2017, 2, .	1.0	1
168	Dynamics of finite-size spheroids in turbulent flow: the roles of flow structures and particle boundary layers. Journal of Fluid Mechanics, 2022, 939, .	1.4	1
169	Special issue on rotating turbulence. Journal of Turbulence, 2021, 22, 231-231.	0.5	0