
Javier Diaz-Nido

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2839326/publications.pdf Version: 2024-02-01

INVIED DIAZ-NIDO

#	Article	IF	CITATIONS
1	The smoothened agonist SAG reduces mitochondrial dysfunction and neurotoxicity of frataxin-deficient astrocytes. Journal of Neuroinflammation, 2022, 19, 93.	7.2	8
2	Future Prospects of Gene Therapy for Friedreich's Ataxia. International Journal of Molecular Sciences, 2021, 22, 1815.	4.1	25
3	DNA repair pathways are altered in neural cell models of frataxin deficiency. Molecular and Cellular Neurosciences, 2021, 111, 103587.	2.2	4
4	Enhanced Production of Herpes Simplex Virus 1 Amplicon Vectors by Gene Modification and Optimization of Packaging Cell Growth Medium. Molecular Therapy - Methods and Clinical Development, 2020, 17, 491-496.	4.1	11
5	Altered Secretome and ROS Production in Olfactory Mucosa Stem Cells Derived from Friedreich's Ataxia Patients. International Journal of Molecular Sciences, 2020, 21, 6662.	4.1	5
6	Effect of Mitochondrial and Cytosolic FXN Isoform Expression on Mitochondrial Dynamics and Metabolism. International Journal of Molecular Sciences, 2020, 21, 8251.	4.1	8
7	Analysis of Putative Epigenetic Regulatory Elements in the FXN Genomic Locus. International Journal of Molecular Sciences, 2020, 21, 3410.	4.1	4
8	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
9	Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency. Molecular Therapy, 2016, 24, 877-889.	8.2	29
10	Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Scientific Reports, 2015, 5, 15083.	3.3	113
11	Frataxin knockdown in human astrocytes triggers cell death and the release of factors that cause neuronal toxicity. Neurobiology of Disease, 2015, 76, 1-12.	4.4	39
12	Low-Dose Curcumin Stimulates Proliferation, Migration and Phagocytic Activity of Olfactory Ensheathing Cells. PLoS ONE, 2014, 9, e111787.	2.5	56
13	Chronic inhibition of glycogen synthase kinase-3 protects against rotenone-induced cell death in human neuron-like cells by increasing BDNF secretion. Neuroscience Letters, 2012, 531, 182-187.	2.1	12
14	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
15	Infectious delivery and long-term persistence of transgene expression in the brain by a 135-kb iBAC-FXN genomic DNA expression vector. Gene Therapy, 2011, 18, 1015-1019.	4.5	24
16	Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration. Glia, 2011, 59, 1458-1471.	4.9	19
17	Silencing of frataxin gene expression triggers p53-dependent apoptosis in human neuron-like cells. Human Molecular Genetics, 2011, 20, 2807-2822.	2.9	49
18	Reversibly immortalized human olfactory ensheathing glia from an elderly donor maintain neuroregenerative capacity. Glia, 2010, 58, 546-558.	4.9	29

#	Article	IF	CITATIONS
19	Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease. Journal of Neuroscience Research, 2010, 88, 1943-1950.	2.9	33
20	Prospects for the Use of Artificial Chromosomes and Minichromosome-Like Episomes in Gene Therapy. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-16.	3.0	8
21	Mitochondrial Hexokinase II Promotes Neuronal Survival and Acts Downstream of Glycogen Synthase Kinase-3. Journal of Biological Chemistry, 2009, 284, 3001-3011.	3.4	64
22	Gene Therapy Approaches to Ataxias. Current Gene Therapy, 2009, 9, 1-8.	2.0	4
23	Pharmacological inhibition of CSKâ€3 is not strictly correlated with a decrease in tyrosine phosphorylation of residues 216/279. Journal of Neuroscience Research, 2008, 86, 668-674.	2.9	24
24	Functional Recovery in a Friedreich's Ataxia Mouse Model by Frataxin Gene Transfer Using an HSV-1 Amplicon Vector. Molecular Therapy, 2007, 15, 1072-1078.	8.2	52
25	Infectious Delivery and Expression of a 135 kb Human FRDA Genomic DNA Locus Complements Friedreich's Ataxia Deficiency in Human Cells. Molecular Therapy, 2007, 15, 248-254.	8.2	58
26	Gene transfer into Purkinje cells using herpesviral amplicon vectors in cerebellar cultures. Neurochemistry International, 2007, 50, 181-188.	3.8	8
27	BDNF production by olfactory ensheathing cells contributes to axonal regeneration of cultured adult CNS neurons. Neurochemistry International, 2007, 50, 491-498.	3.8	65
28	Differentiation of a human neuroblastoma into neuron-like cells increases their susceptibility to transduction by herpesviral vectors. Journal of Neuroscience Research, 2006, 84, 755-767.	2.9	45
29	A clonal cell line from immortalized olfactory ensheathing glia promotes functional recovery in the injured spinal cord. Molecular Therapy, 2006, 13, 598-608.	8.2	49
30	412. A Novel Friedreich's Ataxia Model and In Vivo Gene Rescue Using HSV-1 Amplicon Vectors in Transgenic Mice. Molecular Therapy, 2006, 13, S158.	8.2	0
31	Genes Associated with Adult Axon Regeneration Promoted by Olfactory Ensheathing Cells: A New Role for Matrix Metalloproteinase 2. Journal of Neuroscience, 2006, 26, 5347-5359.	3.6	97
32	Tangling with hypothermia. Nature Medicine, 2004, 10, 460-461.	30.7	27
33	Semaphorin 3C preserves survival and induces neuritogenesis of cerebellar granule neurons in culture. Journal of Neurochemistry, 2004, 87, 879-890.	3.9	34
34	Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. Journal of Neurobiology, 2004, 58, 48-59.	3.6	94
35	A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochemistry International, 2004, 44, 231-242.	3.8	90
36	Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. Journal of Neuroscience Research, 2003, 71, 863-870.	2.9	121

#	Article	IF	CITATIONS
37	High level of amyloid precursor protein expression in neurite-promoting olfactory ensheathing glia (OEC) and OEG-derived cell lines. Journal of Neuroscience Research, 2003, 71, 871-881.	2.9	21
38	Immortalized olfactory ensheathing glia promote axonal regeneration of rat retinal ganglion neurons. Journal of Neurochemistry, 2003, 85, 861-871.	3.9	40
39	Structural Insights and Biological Effects of Glycogen Synthase Kinase 3-specific Inhibitor AR-A014418. Journal of Biological Chemistry, 2003, 278, 45937-45945.	3.4	451
40	Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. Journal of Alzheimer's Disease, 2003, 5, 301-308.	2.6	172
41	Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3. Biochemical Journal, 2003, 372, 129-136.	3.7	110
42	Highly Efficient and Specific Gene Transfer to Purkinje CellsIn VivoUsing a Herpes Simplex Virus I Amplicon. Human Gene Therapy, 2002, 13, 665-674.	2.7	30
43	Ephrin-B1 Promotes Dendrite Outgrowth on Cerebellar Granule Neurons. Molecular and Cellular Neurosciences, 2002, 20, 429-446.	2.2	19
44	Glycosaminoglycans and β-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides, 2002, 23, 1323-1332.	2.4	121
45	Olfactory Ensheathing Glia: Drivers of Axonal Regeneration in the Central Nervous System?. Journal of Biomedicine and Biotechnology, 2002, 2, 37-43.	3.0	44
46	Regulation of tau phosphorylation and protection against β-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer's disease. Bipolar Disorders, 2002, 4, 153-165.	1.9	109
47	Modifications of tau protein during neuronal cell death. Journal of Alzheimer's Disease, 2001, 3, 563-575.	2.6	10
48	The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. Journal of Neurochemistry, 2001, 78, 468-481.	3.9	68
49	Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in Neurobiology, 2000, 61, 133-168.	5.7	450
50	Glycogen Synthase Kinase-3 Modulates Neurite Outgrowth in Cultured Neurons: Possible Implications for Neurite Pathology in Alzheimer's Disease. Journal of Alzheimer's Disease, 1999, 1, 361-378.	2.6	53
51	Distribution of CK2, its substrate MAP1B and phosphatases in neuronal cells. Molecular and Cellular Biochemistry, 1999, 191, 201-205.	3.1	26
52	Downregulation of glycogen synthase kinase-3β (GSK-3β) protein expression during neuroblastoma IMR-32 cell differentiation. , 1999, 55, 278-285.		14
53	Lithium induces morphological differentiation of mouse neuroblastoma cells. , 1999, 57, 261-270.		24
54	Lithium protects cultured neurons against βâ€amyloidâ€induced neurodegeneration. FEBS Letters, 1999, 453, 260-264.	2.8	239

#	Article	IF	CITATIONS
55	Implication of cyclin-dependent kinases and glycogen synthase kinase 3 in the phosphorylation of microtubule-associated protein 1B in developing neuronal cells. , 1998, 52, 445-452.		46
56	Regulation of a site-specific phosphorylation of the microtubule-associated protein 2 during the development of cultured neurons. Neuroscience, 1998, 87, 861-870.	2.3	44
57	Lithium inhibits Alzheimer's diseaseâ€like tau protein phosphorylation in neurons. FEBS Letters, 1997, 411, 183-188.	2.8	285
58	The role of the cytoskeleton in the morphological changes occurring during neuronal differentiation. Seminars in Cell and Developmental Biology, 1996, 7, 733-739.	5.0	8
59	Depletion of catalytic and regulatory subunits of protein kinase CK2 by antisense oligonucleotide treatment of neuroblastoma cells. Cellular and Molecular Neurobiology, 1994, 14, 407-414.	3.3	14
60	Role of phosphorylated MAPIB in neuritogenesis. Cell Biology International, 1994, 18, 309-314.	3.0	15
61	Localization of differentially phosphorylated isoforms of microtubule-associated protein 1B in cultured rat hippocampal neurons. Neuroscience, 1994, 61, 211-223.	2.3	56
62	High External Potassium Induces an Increase in the Phosphorylation of the Cytoskeletal Protein MAP2 in Rat Hippocampal Slices. European Journal of Neuroscience, 1993, 5, 818-824.	2.6	19
63	Heterogeneity in the Phosphorylation of Micro tubuleâ€Associated Protein MAP 1B During Rat Brair Development. Journal of Neurochemistry, 1993, 61, 961-972.	3.9	92
64	Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B. FEBS Letters, 1993, 330, 85-89.	2.8	48
65	N-methyl-d-aspartate stimulates the dephosphorylation of the microtubule-associated protein 2 and potentiates excitatory synaptic pathways in the rat hippocampus. Neuroscience, 1993, 54, 859-871.	2.3	40
66	Implication of brain cdc2 and MAP2 kinases in the phosphorylation of tau protein in Alzheimer's disease. FEBS Letters, 1992, 308, 218-224.	2.8	186
67	Increase in Cytoplasmic Casein Kinase II-Type Activity Accompanies Neurite Outgrowth After DNA Synthesis Inhibition in NIA-103 Neuroblastoma Cells. Journal of Neurochemistry, 1992, 58, 1820-1828.	3.9	24
68	Differential effects of tumor necrosis factor on the growth and differentiation of neuroblastoma and glioma cells. Experimental Cell Research, 1991, 194, 161-164.	2.6	27
69	The distribution and phosphorylation of the microtubule-associated protein MAP 1B in growth cones. Journal of Neurocytology, 1991, 20, 1007-1022.	1.5	61
70	Addition of protease inhibitors to culture medium of neuroblastoma cells induces both neurite outgrowth and phosphorylation of microtubule-associated protein MAP-1B. Journal of Cell Science, 1991, 98, 409-414.	2.0	21
71	Phosphorylation of Microtubule Proteins in Rat Brain at Different Developmental Stages: Comparison with That Found in Neuronal Cultures. Journal of Neurochemistry, 1990, 54, 211-222.	3.9	76
72	Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neuroscience Letters, 1990, 110, 221-226.	2.1	47

#	Article	IF	CITATION
73	Phosphorylation of a neuronal-specific beta-tubulin isotype. Journal of Biological Chemistry, 1990, 265, 13949-54.	3.4	76
74	Quantitation of microtubule-associated protein MAP-1B in brain and other tissues. International Journal of Biochemistry & Cell Biology, 1989, 21, 723-730.	0.5	3
75	Association of casein kinase II with microtubules. Experimental Cell Research, 1989, 181, 263-272.	2.6	71
76	Differential phosphorylation of microtubule proteins by ATP and GTP. Molecular and Cellular Biochemistry, 1988, 79, 73-79.	3.1	10
77	Phosphorylation of neuronal microtubule proteins. Protoplasma, 1988, 145, 82-88.	2.1	12
78	A casein kinase II-related activity is involved in phosphorylation of microtubule-associated protein MAP-1B during neuroblastoma cell differentiation Journal of Cell Biology, 1988, 106, 2057-2065.	5.2	159
79	Tubulin phosphorylation by casein kinase II is similar to that found in vivo Journal of Cell Biology, 1987, 105, 1731-1739.	5.2	119