Thomas Guhr

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/2839251/publications.pdf
Version: 2024-02-01

1 Random-matrix theories in quantum physics: common concepts. Physics Reports, 1998, 299, 189-425.
10.3

1,829

2 Random matrix approach to cross correlations in financial data. Physical Review E, 2002, 65, 066126.
0.8

758

3 Identifying States of a Financial Market. Scientific Reports, 2012, 2, 644.
1.6

160

4 Dysonâ $€^{T M}$ s correlation functions and graded symmetry. Journal of Mathematical Physics, 1991, 32, 336-347. 0.586

5	Transitions toward Quantum Chaos: With Supersymmetry from Poisson to Gauss. Annals of Physics, 1996, 250, 145-192.	1.0	70
6	An Itzyksonâ€"Zuberâ€like integral and diffusion for complex ordinary and supermatrices. Journal of Mathematical Physics, 1996, 37, 6395-6413.	0.5	67
7	Impact of the tick-size on financial returns and correlations. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 4828-4843.	1.2	45
8	Transition from Poisson Regularity to Chaos in a Time-Reversal NonInvariant System. Physical Review Letters, 1996, 76, 2258-2261.	2.9	44
9	Non-stationarity in financial time series: Generic features and tail behavior. Europhysics Letters, 2013, 103, 58003.	0.7	42
10	Semiclassical Identification of Periodic Orbits in a Quantum Many-Body System. Physical Review Letters, 2017, 118, 164101.	2.9	32
11	Recursive construction for a class of radial functions. I. Ordinary space. Journal of Mathematical Physics, 2002, 43, 2707.	0.5	31
12	Eigenvalue Densities of Real and Complex Wishart Correlation Matrices. Physical Review Letters, 2010, 105, 244101.	2.9	30
13	Gelfand-Tzetlin coordinates for the unitary supergroup. Communications in Mathematical Physics, 1996, 176, 555-576.	1.0	29

Arbitrary unitarily invariant random matrix ensembles and supersymmetry. Journal of Physics A, 2006, 39, 13191-13223.
1.6

28

Local normalization: Uncovering correlations in non-stationary financial time series. Physica A:
Statistical Mechanics and Its Applications, 2010, 389, 3856-3865.
1.2

28

Spectral correlations in the crossover between GUE and Poisson regularity: On the identification of scales. Journal of Mathematical Physics, 1997, 38, 1870-1887.

Power mapping with dynamical adjustment for improved portfolio optimization. Quantitative Finance,
2010, 10, 107-119.
0.9

27

Supersymmetry Approach to Wishart Correlation Matrices: Exact Results. Journal of Statistical
Physics, 2012, 148, 981-998.

Stability and hierarchy of quasi-stationary states: financial markets as an example. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015, P08011.

Quantization of HyperbolicN-Sphere Scattering Systems in Three Dimensions. Annals of Physics, 1997,
258, 286-319.

Distributions of off-diagonal scattering matrix elements: Exact results. Annals of Physics, 2014, 342,
103-132.

Recursive construction for a class of radial functions. II. Superspace. Journal of Mathematical
Physics, 2002, 43, 2741.

Distribution of the Smallest Eigenvalue in the Correlated Wishart Model. Physical Review Letters,
2013, 111, 094101.
2.9
0.7
0.7

Microscopic understanding of heavy-tailed return distributions in an agent-based model. Europhysics
Letters, 2012, 100, 38005.

Credit riskâ€"A structural model with jumps and correlations. Physica A: Statistical Mechanics and Its
Applications, 2007, 383, 533-569.

Between Poisson and GUE Statistics: Role of the Breitâ $€$ "Wigner Width. Annals of Physics, 1998, 270, 292-327.
1.0

17

A comparison of the superbosonization formula and the generalized
29 Hubbardâ $€^{\prime \prime}$ Stratonovichâ€\%otransformation. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 275206.

30 Arbitrary rotation invariant random matrix ensembles and supersymmetry: orthogonal and unitary-symplectic case. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 275205.

31 A Random Matrix Approach to Credit Risk. PLoS ONE, 2014, 9, e98030.
1.1

17

32 Compensating asynchrony effects in the calculation of financial correlations. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 767-779.

Distribution of Off-Diagonal Cross Sections in Quantum Chaotic Scattering: Exact Results and Data Comparison. Physical Review Letters, 2017, 119, 244102.
2.9

16

STATISTICAL CAUSES FOR THE EPPS EFFECT IN MICROSTRUCTURE NOISE. International Journal of Theoretical and Applied Finance, 2011, 14, 1231-1246.

Credit risk and the instability of the financial system: An ensemble approach. Europhysics Letters, 2014,
105, 38004.
0.7

15

Zooming into market states. Journal of Statistical Mechanics: Theory and Experiment, 2015, 2015,
P01029.
A new approach to derive Pfaffian structures for random matrix ensembles. Journal of Physics A:
Mathematical and Theoretical, 2010, 43, 135204.

40 Quasi-stationary states in temporal correlations for traffic systems: Cologne orbital motorway as an

41	Impact and recovery process of mini flash crashes: An empirical study. PLoS ONE, 2018, 13, e0196920.	1.1	12
42	Eigenvalue density of the doubly correlated Wishart model: exact results. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 175204.	0.7	11
43	Physics, 1993, 34, 2523-2540.	0.5	10

44 The supersymmetry method for chiral random matrix theory with arbitrary rotation-invariant
weights. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 295201.
0.7

10

45	Correlated power time series of individual wind turbines: A data driven model approach. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8
46	Distribution of the smallest eigenvalue in complex and real correlated Wishart ensembles. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 075004.	0.7

47 PORTFOLIO RETURN DISTRIBUTIONS: SAMPLE STATISTICS WITH STOCHASTIC CORRELATIONS. International Journal of Theoretical and Applied Finance, 2015, 18, 1550012.

$0.2 \quad 9$

48 The importance of antipersistence for traffic jams. Europhysics Letters, 2017, 118, 38005.
0.7

10
$0.7 \quad 8$

Spectral statistics in directed complex networks and universality of the Ginibre ensemble.
$50 \quad$ Communications in Nonlinear Science and Numerical Simulation, 2015, 20, 1026-1032.
$1.7 \quad 8$

Credit risk: taking fluctuating asset correlations into account. Journal of Credit Risk, 2015, 11, 73-94.
$0.2 \quad 8$

Semiclassical prediction of large spectral fluctuations in interacting kicked spin chains. Annals of

55	Semiclassical limits for the QCD Dirac operator. Annals of Physics, 2007, 322, 287-314.
56	Collective versus single-particle motion in quantum many-body systems from the perspective of an integrable model. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 265101.
57	6
Compounding approach for univariate time series with nonstationary variances. Physical Review E, $2015,92,062901$.	

58 Exact spectral densities of complex noise-plus-structure random matrices. Physical Review E, 2016, 94,

Spreading in integrable and non-integrable many-body systems. Physica A: Statistical Mechanics and Its Applications, 2016, 461, 683-693.
$65 \quad$ Winding number statistics of a parametric chiral unitary random matrix ensemble*. Journal of Physics
$0.7 \quad 3$

Spectral correlations in the crossover transition from a superposition of harmonic oscillators to the Gaussian unitary ensemble. Physical Review E, 1999, 59, 330-336.

QUANTILE CORRELATIONS: UNCOVERING TEMPORAL DEPENDENCIES IN FINANCIAL TIME SERIES.
67 QUANTILE CORRELATIONS: UNCOVERING TEMPORAL DEPENDENCIES IN FINAN
$0.2 \quad 2$

68 Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations. Risks, 2018, 6, 42. 1.3

> Special issue in honour of the life and work of Fritz Haake. Journal of Physics A: Mathematical and Theoretical, 2021,54, 130301 .
$0.7 \quad 2$ and Nanostructures, 2001, 9, 418-423.

> A mapping between the spin and fermion algebra. Journal of Physics A: Mathematical and Theoretical,

2021, 54, 345201.

