List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2838911/publications.pdf Version: 2024-02-01

Νειιν Ρλητε

#	Article	IF	CITATIONS
1	Identification of a putative nuclear localization signal in the tumor suppressor maspin sheds light on its nuclear import regulation. FEBS Open Bio, 2019, 9, 1174-1183.	2.3	12
2	Carbon nanotubes as molecular transporters to study a new mechanism for molecular entry into the cell nucleus using actin polymerization force. PLoS ONE, 2019, 14, e0221562.	2.5	4
3	Cell Cycle–Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Molecular Cancer Research, 2018, 16, 16-31.	3.4	27
4	The chaperone dynein LL1 mediates cytoplasmic transport of empty and mature hepatitis B virus capsids. Journal of Hepatology, 2018, 68, 441-448.	3.7	24
5	Nuclear transport of the <i>Neurospora crassa</i> NIT-2 transcription factor is mediated by importin-α. Biochemical Journal, 2017, 474, 4091-4104.	3.7	9
6	Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms. Scientific Reports, 2017, 7, 11381.	3.3	20
7	HIV-1 enhances mTORC1 activity and repositions lysosomes to the periphery by co-opting Rag GTPases. Scientific Reports, 2017, 7, 5515.	3.3	31
8	Vimentin plays a role in the release of the influenza A viral genome from endosomes. Virology, 2016, 497, 41-52.	2.4	26
9	A novel mechanism for nuclear import by actin-based propulsion used by the baculovirus nucleocapsid. Journal of Cell Science, 2016, 129, 2905-11.	2.0	21
10	Nuclear entry of DNA viruses. Frontiers in Microbiology, 2015, 6, 467.	3.5	87
11	The minute virus of mice exploits different endocytic pathways for cellular uptake. Virology, 2015, 482, 157-166.	2.4	10
12	Distinct mechanisms controlling rough and smooth endoplasmic reticulum-mitochondria contacts. Journal of Cell Science, 2015, 128, 2759-65.	2.0	92
13	Old foes, new understandings: nuclear entry of small non-enveloped DNA viruses. Current Opinion in Virology, 2015, 12, 59-65.	5.4	16
14	Galectin-3 plays a role in minute virus of mice infection. Virology, 2015, 481, 63-72.	2.4	14
15	Exploring Nuclear Pore Complex Molecular Architecture by Immuno-Electron Microscopy Using Xenopus Oocytes. Methods in Cell Biology, 2014, 122, 81-98.	1.1	5
16	Cell migration is another player of the minute virus of mice infection. Virology, 2014, 468-470, 150-159.	2.4	5
17	The intermediate filament network protein, vimentin, is required for parvoviral infection. Virology, 2013, 444, 181-190.	2.4	29
18	Proteomic analysis identifies a novel function for galectin-3 in the cell entry of parvovirus. Journal of Proteomics, 2013, 79, 123-132.	2.4	6

#	Article	IF	CITATIONS
19	Baculovirus Nuclear Import: Open, Nuclear Pore Complex (NPC) Sesame. Viruses, 2013, 5, 1885-1900.	3.3	23
20	Parvoviruses Cause Nuclear Envelope Breakdown by Activating Key Enzymes of Mitosis. PLoS Pathogens, 2013, 9, e1003671.	4.7	51
21	Effect of Viral Infection on the Nuclear Envelope and Nuclear Pore Complex. International Review of Cell and Molecular Biology, 2012, 299, 117-159.	3.2	25
22	Nuclear transport of baculovirus: Revealing the nuclear pore complex passage. Journal of Structural Biology, 2012, 177, 90-98.	2.8	44
23	How viruses access the nucleus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1634-1645.	4.1	121
24	Examining the requirements for nucleoporins by HIV-1. Future Microbiology, 2011, 6, 1247-1250.	2.0	4
25	Nuclear Envelope Disruption Involving Host Caspases Plays a Role in the Parvovirus Replication Cycle. Journal of Virology, 2011, 85, 4863-4874.	3.4	56
26	HIV-1 remodels the nuclear pore complex. Journal of Cell Biology, 2011, 193, 619-631.	5.2	79
27	Effect of BMAP-28 Antimicrobial Peptides on Leishmania major Promastigote and Amastigote Growth: Role of Leishmanolysin in Parasite Survival. PLoS Neglected Tropical Diseases, 2011, 5, e1141.	3.0	70
28	The nucleoporin Nup153 maintains nuclear envelope architecture and is required for cell migration in tumor cells. FEBS Letters, 2010, 584, 3013-3020.	2.8	46
29	The Importin β Binding Domain Modulates the Avidity of Importin β for the Nuclear Pore Complex. Journal of Biological Chemistry, 2010, 285, 13769-13780.	3.4	38
30	Nucleoporin 153 Arrests the Nuclear Import of Hepatitis B Virus Capsids in the Nuclear Basket. PLoS Pathogens, 2010, 6, e1000741.	4.7	128
31	Microinjection of Xenopus laevis oocytes as a system for studying nuclear transport of viruses. Methods, 2010, 51, 114-120.	3.8	15
32	Intracellular Transport of Human Immunodeficiency Virus Type 1 Genomic RNA and Viral Production Are Dependent on Dynein Motor Function and Late Endosome Positioning. Journal of Biological Chemistry, 2009, 284, 14572-14585.	3.4	69
33	Screening and Characterization of Surface-Tethered Cationic Peptides for Antimicrobial Activity. Chemistry and Biology, 2009, 16, 58-69.	6.0	197
34	Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie, 2009, 91, 160-164.	2.6	45
35	Identification of Novel Antibacterial Peptides by Chemoinformatics and Machine Learning. Journal of Medicinal Chemistry, 2009, 52, 2006-2015.	6.4	250
36	Microinjection of Xenopus Laevis Oocytes. Journal of Visualized Experiments, 2009, , .	0.3	12

#	Article	IF	CITATIONS
37	Functional association of Sun1 with nuclear pore complexes. Journal of Cell Biology, 2007, 178, 785-798.	5.2	202
38	Ultrastructural Analysis of the Nuclear Localization Sequences on Influenza A Ribonucleoprotein Complexes. Journal of Molecular Biology, 2007, 374, 910-916.	4.2	32
39	Nuclear import of influenza A viral ribonucleoprotein complexes is mediated by two nuclear localization sequences on viral nucleoprotein. Virology Journal, 2007, 4, 49.	3.4	81
40	Nuclear import of spliceosomal snRNPsThis paper is one of a selection of papers published in this Special Issue, entitled The Nucleus: A Cell Within A Cell Canadian Journal of Physiology and Pharmacology, 2006, 84, 367-376.	1.4	14
41	The Conserved Transmembrane Nucleoporin NDC1 Is Required for Nuclear Pore Complex Assembly in Vertebrate Cells. Molecular Cell, 2006, 22, 93-103.	9.7	210
42	Parvoviral nuclear import: bypassing the host nuclear-transport machinery. Journal of General Virology, 2006, 87, 3209-3213.	2.9	54
43	Use of Intact Xenopus Oocytes in Nucleocytoplasmic Transport Studies. Methods in Molecular Biology, 2006, 322, 301-314.	0.9	15
44	Pushing the envelope: microinjection of Minute virus of mice into Xenopus oocytes causes damage to the nuclear envelope. Journal of General Virology, 2005, 86, 3243-3252.	2.9	47
45	Nuclear Pore Complex Structure. Developmental Cell, 2004, 7, 780-781.	7.0	5
46	Nuclear import of hepatitis B virus capsids and release of the viral genome. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9849-9854.	7.1	246
47	Importin β-depending Nuclear Import Pathways: Role of the Adapter Proteins in the Docking and Releasing Steps. Molecular Biology of the Cell, 2003, 14, 2104-2115.	2.1	27
48	Nuclear Pore Complex Is Able to Transport Macromolecules with Diameters of â^1⁄439 nm. Molecular Biology of the Cell, 2002, 13, 425-434.	2.1	702
49	The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. Rna, 2000, 6, 136-158.	3.5	298
50	Mlp2p, A Component of Nuclear Pore Attached Intranuclear Filaments, Associates with Nic96p. Journal of Biological Chemistry, 2000, 275, 343-350.	3.4	81
51	The Yeast Nucleoporin Nup53p Specifically Interacts with Nic96p and Is Directly Involved in Nuclear Protein Import. Molecular Biology of the Cell, 2000, 11, 3885-3896.	2.1	28
52	Nup116p Associates with the Nup82p-Nsp1p-Nup159p Nucleoporin Complex. Journal of Biological Chemistry, 2000, 275, 23540-23548.	3.4	52
53	Nup192p Is a Conserved Nucleoporin with a Preferential Location at the Inner Site of the Nuclear Membrane. Journal of Biological Chemistry, 1999, 274, 22646-22651.	3.4	44
54	Molecular dissection of nuclear pore complex structure and nucleocytoplasmic transport. Biology of the Cell, 1998, 90, 275-276.	2.0	1

#	Article	IF	CITATIONS
55	Molecular Architecture of the Yeast Nuclear Pore Complex: Localization of Nsp1p Subcomplexes. Journal of Cell Biology, 1998, 143, 577-588.	5.2	106
56	Toward the molecular dissection of protein import into nuclei. Current Opinion in Cell Biology, 1996, 8, 397-406.	5.4	106
57	Molecular Dissection of the Nuclear Pore Complex. Critical Reviews in Biochemistry and Molecular Biology, 1996, 31, 153-199.	5.2	130
58	Towards understanding the three-dimensional structure of the nuclear pore complex at the molecular level. Current Opinion in Structural Biology, 1994, 4, 187-196.	5.7	65
59	X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle. Journal of Muscle Research and Cell Motility, 1991, 12, 235-241.	2.0	25