Xinyou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2837462/publications.pdf

Version: 2024-02-01

759233 677142 23 494 12 22 citations h-index g-index papers 23 23 23 555 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Structural Characterization of Protonated Water Clusters Confined in HZSM-5 Zeolites. Journal of the American Chemical Society, 2021, 143, 10203-10213.	13.7	35
2	Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chemical Reviews, 2021, 121, 9450-9501.	47.7	43
3	Single Solvent Molecules Induce Dual Nucleophiles in Gas-Phase Ion–Molecule Nucleophilic Substitution Reactions. Journal of Physical Chemistry Letters, 2021, 12, 7134-7139.	4.6	8
4	Differential Condensation of Methane Isotopologues Leading to Isotopic Enrichment under Non-equilibrium Gas–Surface Collision Conditions. Journal of Physical Chemistry A, 2021, 125, 9405-9413.	2.5	3
5	Water-Assisted Proton Transport in Confined Nanochannels. Journal of Physical Chemistry C, 2020, 124, 16186-16201.	3.1	12
6	Time-Dependent Perspective for the Intramolecular Couplings of the N–H Stretches of Protonated Tryptophan. Journal of Physical Chemistry A, 2020, 124, 4062-4067.	2.5	1
7	Interaction between \hat{I}^3 C87 and \hat{I}^3 R242 residues participates in energy coupling between catalysis and proton translocation in Escherichia coli ATP synthase. Biochimica Et Biophysica Acta - Bioenergetics, 2019, 1860, 679-687.	1.0	5
8	ls CH3NC isomerization an intrinsic non-RRKM unimolecular reaction?. Journal of Chemical Physics, 2019, 151, 184110.	3.0	4
9	Pronounced changes in atomistic mechanisms for the Cl ^{â^'} + CH ₃ I S _N 2 reaction with increasing collision energy. Physical Chemistry Chemical Physics, 2019, 21, 2039-2045.	2.8	5
10	Addressing an instability in unrestricted density functional theory direct dynamics simulations. Journal of Computational Chemistry, 2019, 40, 933-936.	3.3	3
11	PSO Method for Fitting Analytic Potential Energy Functions. Application to I–(H2O). Journal of Chemical Theory and Computation, 2018, 14, 1321-1332.	5.3	5
12	Direct dynamics simulations of the unimolecular dissociation of dioxetane: Probing the non-RRKM dynamics. Journal of Chemical Physics, 2018, 148, 164309.	3.0	12
13	Model-Based Analyses of Confined Polymer Electrolyte Nanothin Films Experimentally Probed by Polarized ATR–FTIR Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 9578-9585.	3.1	13
14	Effects of vibrational and rotational energies on the lifetime of the pre-reaction complex for the Fâ^'+ CH3I SN2 reaction. International Journal of Mass Spectrometry, 2018, 429, 127-135.	1.5	11
15	A quantum mechanical insight into SN2 reactions: Semiclassical initial value representation calculations of vibrational features of the Clâ^acCH3Cl pre-reaction complex with the VENUS suite of codes. Journal of Chemical Physics, 2018, 149, 164113.	3.0	19
16	Anharmonic Densities of States for Vibrationally Excited I ^{$\hat{a}\in$"} (H ₂ O), (H ₂ O) ₂ , and I ^{$\hat{a}\in$"} (H ₂ O) ₂ . Journal of Chemical Theory and Computation, 2018, 14, 3986-3997.	5. 3	8
17	Competing E2 and S _N 2 Mechanisms for the F [–] + CH ₃ CH ₂ 1 Reaction. Journal of Physical Chemistry A, 2017, 121, 1078-1085.	2.5	26
18	Effect of microsolvation on the OHâ^'(H2O)n+ CH3I rate constant. comparison of experiment and calculations for OHâ^'(H2O)2+ CH3I. International Journal of Mass Spectrometry, 2017, 418, 122-129.	1.5	20

Χίνυση

#	Article	IF	CITATION
19	Direct Chemical Dynamics Simulations. Journal of the American Chemical Society, 2017, 139, 3570-3590.	13.7	128
20	Perspective: chemical dynamics simulations of non-statistical reaction dynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160204.	3.4	63
21	Post-transition state dynamics and product energy partitioning following thermal excitation of the Fâ<-HCH2CN transition state: Disagreement with experiment. Journal of Chemical Physics, 2017, 147, 144301.	3.0	14
22	Potential energy surface stationary points and dynamics of the F ^{â^'} + CH ₃ I double inversion mechanism. Physical Chemistry Chemical Physics, 2017, 19, 20127-20136.	2.8	31
23	Chemical Dynamics Simulations of Benzene Dimer Dissociation. Journal of Physical Chemistry A, 2015, 119, 6631-6640.	2.5	25