List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836940/publications.pdf Version: 2024-02-01



YORAM REICH

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The PSI Framework and Theory of Design. IEEE Transactions on Engineering Management, 2022, 69, 1037-1049.                                                                                             | 3.5 | 18        |
| 2  | The research environmental impact disclosure. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2022, 33, 3-5.                                                       | 2.1 | 2         |
| 3  | Documenting design research by structured multilevel analysis: supporting the diversity of the design research community of practice. Design Science, 2022, 8, .                                      | 2.1 | 5         |
| 4  | Journal innovations, 2021 closure, and reviewers' gratitude. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2022, 33, 1-2.                                        | 2.1 | 1         |
| 5  | We cannot play 20 questions with creativity and innovation and win: the necessity of practice-based integrative research. International Journal of Design Creativity and Innovation, 2022, 10, 69-74. | 1.2 | 1         |
| 6  | Improving Process Descriptions in Research by Model-Based Analysis. IEEE Systems Journal, 2021, 15, 435-444.                                                                                          | 4.6 | 8         |
| 7  | Using Domain-Specific Models to Facilitate Model-Based Systems-Engineering: Development Process<br>Design Modeling with OPM and PROVE. Applied Sciences (Switzerland), 2021, 11, 1532.                | 2.5 | 8         |
| 8  | Robust design under cumulative damage due to dynamic failure mechanisms. Systems Engineering, 2021, 24, 322-338.                                                                                      | 2.7 | 4         |
| 9  | Incorporating Systems Thinking Into a Cyber Resilience Maturity Model. IEEE Engineering Management<br>Review, 2021, 49, 110-115.                                                                      | 1.3 | 6         |
| 10 | MAPPING AND ENHANCING DESIGN STUDIES WITH PSI META-THEORETIC DESIGN FRAMEWORK. Proceedings of the Design Society, 2021, 1, 2007-2016.                                                                 | 0.8 | 2         |
| 11 | DESIGNING A MODEL-BASED, MULTI-PERSPECTIVE PROCESS DESIGN ENVIRONMENT. Proceedings of the Design Society, 2021, 1, 1103-1112.                                                                         | 0.8 | 1         |
| 12 | 2020 closure, reviewers' gratitude, and improved review process transparency. Research in<br>Engineering Design - Theory, Applications, and Concurrent Engineering, 2021, 32, 1-2.                    | 2.1 | 0         |
| 13 | Model-based Threat and Risk Assessment for Systems Design. , 2021, , .                                                                                                                                |     | 4         |
| 14 | Requirements for Model-Based Development Process Design and Compliance of Standardized Models.<br>Systems, 2021, 9, 3.                                                                                | 2.3 | 2         |
| 15 | We are not users. Communications of the ACM, 2021, 64, 37-39.                                                                                                                                         | 4.5 | 0         |
| 16 | Configuring systems verification, validation and testing plan under various constraints and unpredicted events. International Journal of Product Development, 2021, 25, 369.                          | 0.2 | 0         |
| 17 | Singularity analysis of some multi-platform mechanisms by decomposition and reciprocality.<br>Mechanism and Machine Theory, 2020, 146, 103735.                                                        | 4.5 | 3         |
| 18 | Automated discovery of scientific concepts: Replicating three recent discoveries in mechanics.<br>Advanced Engineering Informatics, 2020, 44, 101080.                                                 | 8.0 | 4         |

| #  | Article                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The coronavirus pandemic: How can design help?. Research in Engineering Design - Theory,<br>Applications, and Concurrent Engineering, 2020, 31, 141-142.                                | 2.1 | 7         |
| 20 | 2019 closure, reviewers gratitude, and an invitation. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2020, 31, 1-2.                                 | 2.1 | 0         |
| 21 | Designing development processes related to system of systems using a modeling framework. Systems<br>Engineering, 2019, 22, 561-575.                                                     | 2.7 | 15        |
| 22 | The PSI Network Model for Studying Diverse Complex Design Scenarios. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 1283-1292.              | 0.6 | 4         |
| 23 | ESE Framework Verification by MBSE. IEEE Systems Journal, 2019, 13, 2108-2117.                                                                                                          | 4.6 | 6         |
| 24 | A novel criterion for singularity analysis of parallel mechanisms. Mechanism and Machine Theory, 2019, 137, 459-475.                                                                    | 4.5 | 16        |
| 25 | 2018 Closure and reviewers' gratitude. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 2019, 30, 1-2.                                             | 2.1 | 1         |
| 26 | EPIC framework for enterprise processes integrative collaboration. Systems Engineering, 2018, 21, 30-46.                                                                                | 2.7 | 10        |
| 27 | Design theory: an invitation for a quilt of perspectives. Research in Engineering Design - Theory,<br>Applications, and Concurrent Engineering, 2018, 29, 1-2.                          | 2.1 | 1         |
| 28 | Design theory: a foundation of a new paradigm for design science and engineering. Research in<br>Engineering Design - Theory, Applications, and Concurrent Engineering, 2018, 29, 5-21. | 2.1 | 44        |
| 29 | Designing the Future We Want. , 2018, , 39-50.                                                                                                                                          |     | 0         |
| 30 | A Complete Geometric Singular Characterization of the 6/6 Stewart Platform. Journal of Mechanisms and Robotics, 2018, 10, .                                                             | 2.2 | 9         |
| 31 | 2017 Closure and reviewers gratitude. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 2018, 29, 3-4.                                              | 2.1 | 1         |
| 32 | A Framework for Development Process Design and its use for Establishing Intellectual Property<br>Governance : Introduction of the PROVE framework using a case study. , 2018, , .       |     | 3         |
| 33 | Planning the verification, validation, and testing process: a case study demonstrating a decision support model. Journal of Engineering Design, 2017, 28, 171-204.                      | 2.3 | 20        |
| 34 | The principle of reflexive practice. Design Science, 2017, 3, .                                                                                                                         | 2.1 | 27        |
| 35 | 2016 closure. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2017, 28, 1-3.                                                                         | 2.1 | 4         |
| 36 | Designing Products for Adaptability: Insights from Four Industrial Cases. Decision Sciences, 2017, 48, 875-917                                                                          | 4.5 | 51        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | What is a reference?. Research in Engineering Design - Theory, Applications, and Concurrent<br>Engineering, 2017, 28, 411-419.                                                                  | 2.1 | 7         |
| 38 | Biomimetic Design Method for Innovation and Sustainability. , 2016, , .                                                                                                                         |     | 44        |
| 39 | Enterprise Systems Engineering for Improving Crossâ€enterprise Effectiveness. Incose International<br>Symposium, 2016, 26, 2085-2100.                                                           | 0.6 | 1         |
| 40 | Optimizing System Design under Degrading Failure Agents. , 2016, , .                                                                                                                            |     | 3         |
| 41 | How should the fate of submissions be determined? What is your voice?. Research in Engineering<br>Design - Theory, Applications, and Concurrent Engineering, 2016, 27, 193-194.                 | 2.1 | 0         |
| 42 | What can We Learn from Biological Systems when Applying the Law of System Completeness?. Procedia<br>Engineering, 2015, 131, 104-114.                                                           | 1.2 | 6         |
| 43 | Substance Field Analysis and Biological Functions. Procedia Engineering, 2015, 131, 372-376.                                                                                                    | 1.2 | 5         |
| 44 | Advancing Architecture Options Theory: Six Industrial Case Studies. Systems Engineering, 2015, 18,<br>396-414.                                                                                  | 2.7 | 40        |
| 45 | Enterprise Systems Engineering for Better Operational Interoperability. Systems Engineering, 2015, 18, 625-638.                                                                                 | 2.7 | 13        |
| 46 | lt's all about the team. Research in Engineering Design - Theory, Applications, and Concurrent<br>Engineering, 2015, 26, 1-2.                                                                   | 2.1 | 1         |
| 47 | Biomimetics: Structure–Function Patterns Approach. Journal of Mechanical Design, Transactions of the ASME, 2014, 136, .                                                                         | 2.9 | 32        |
| 48 | The impact of design research journals. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 2014, 25, 279-281.                                                | 2.1 | 0         |
| 49 | Year closure and a new beginning: towards better engineering design research. Research in<br>Engineering Design - Theory, Applications, and Concurrent Engineering, 2014, 25, 1-2.              | 2.1 | 5         |
| 50 | Designing winning robots by careful design of their development process. Research in Engineering<br>Design - Theory, Applications, and Concurrent Engineering, 2014, 25, 157-183.               | 2.1 | 7         |
| 51 | What kinds of research evaluations work?. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 2014, 25, 93-94.                                                | 2.1 | 2         |
| 52 | Designing science. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2013, 24, 215-218.                                                                        | 2.1 | 6         |
| 53 | Theory and practice of journal editorship: on editorial ethics. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2013, 24, 93-95.                             | 2.1 | 0         |
| 54 | Creativity and scientific discovery with infused design and its analysis with C–K theory. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2013, 24, 201-214. | 2.1 | 27        |

YORAM REICH

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Philosophy of design, science of design, engineering (of) design: what is your choice?. Research in<br>Engineering Design - Theory, Applications, and Concurrent Engineering, 2013, 24, 321-323.                                 | 2.1 | 4         |
| 56 | Enhancing learning algorithms to support data with short sequence features by automated feature discovery. Knowledge-Based Systems, 2013, 52, 114-132.                                                                           | 7.1 | 2         |
| 57 | Multi-level modelling and simulation of new product development processes. Journal of Engineering<br>Design, 2013, 24, 185-210.                                                                                                  | 2.3 | 28        |
| 58 | A theoretical analysis of creativity methods in engineering design: casting and improving ASIT within<br>C–K theory. Journal of Engineering Design, 2012, 23, 137-158.                                                           | 2.3 | 54        |
| 59 | The interdisciplinary engineering knowledge genome. Research in Engineering Design - Theory,<br>Applications, and Concurrent Engineering, 2012, 23, 251-264.                                                                     | 2.1 | 29        |
| 60 | Developing an analytical model for planning systems verification, validation and testing processes.<br>Advanced Engineering Informatics, 2012, 26, 429-438.                                                                      | 8.0 | 21        |
| 61 | Strengthening learning algorithms by feature discovery. Information Sciences, 2012, 189, 176-190.                                                                                                                                | 6.9 | 26        |
| 62 | Reflection and reviewers appreciation. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 2012, 23, 1-4.                                                                                      | 2.1 | 0         |
| 63 | Design Process Planning Using DSM. , 2011, , 37-49.                                                                                                                                                                              |     | 2         |
| 64 | Managing the Dynamics of New Product Development Processes. , 2011, , .                                                                                                                                                          |     | 37        |
| 65 | An Evaluation of Musical Score Characteristics for Automatic Classification of Composers. Computer<br>Music Journal, 2011, 35, 86-97.                                                                                            | 0.1 | 11        |
| 66 | Formalizing a Workflow-Net Implementation of Design-Structure-Matrix-Based Process Planning for<br>New Product Development. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and<br>Humans, 2011, 41, 476-491. | 2.9 | 22        |
| 67 | Designing the voices. Research in Engineering Design - Theory, Applications, and Concurrent<br>Engineering, 2011, 22, 1-3.                                                                                                       | 2.1 | 1         |
| 68 | Kenneth Preiss. In memoriam. Advanced Engineering Informatics, 2011, 25, 399-400.                                                                                                                                                | 8.0 | 0         |
| 69 | DSM Enhancements. , 2011, , 51-61.                                                                                                                                                                                               |     | 0         |
| 70 | Dynamic New-Product Design Process. , 2011, , 113-122.                                                                                                                                                                           |     | 0         |
| 71 | Logic Issues of DSM-Based Processes. , 2011, , 97-110.                                                                                                                                                                           |     | 1         |
|    |                                                                                                                                                                                                                                  |     |           |

YORAM REICH

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Managing Development Processes. , 2011, , 19-36.                                                                                                                                            |     | Ο         |
| 74 | From DSM to DSM Net. , 2011, , 123-151.                                                                                                                                                     |     | 0         |
| 75 | Interpretation Using Implementation Rules and Business Rules. , 2011, , 153-168.                                                                                                            |     | 1         |
| 76 | The redesign of Research in Engineering Design. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2010, 21, 65-68.                                         | 2.1 | 2         |
| 77 | My method is better!. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2010, 21, 137-142.                                                                 | 2.1 | 65        |
| 78 | To accept or not to accept: RED's way. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 2010, 21, 207-208.                                             | 2.1 | 0         |
| 79 | Inventing a New Method in Statics Through Knowledge in Kinematics. , 2009, , .                                                                                                              |     | 1         |
| 80 | From DSM-Based Planning to Design Process Simulation: A Review of Process Scheme Logic Verification Issues. IEEE Transactions on Engineering Management, 2009, 56, 636-649.                 | 3.5 | 62        |
| 81 | Coaching product development teams: a conceptual foundation for empirical studies. Research in<br>Engineering Design - Theory, Applications, and Concurrent Engineering, 2009, 19, 205-222. | 2.1 | 21        |
| 82 | Creative conceptual design: Extending the scope by infused design. CAD Computer Aided Design, 2009, 41, 117-135.                                                                            | 2.7 | 63        |
| 83 | Managing product quality, risk, and resources through resource quality function deployment.<br>Journal of Engineering Design, 2008, 19, 249-267.                                            | 2.3 | 41        |
| 84 | The Interplay Between Design and Mathematics: Introduction to Bootstrapping Effects. , 2008, , .                                                                                            |     | 8         |
| 85 | Design of Design Methodology for Autonomous Robots. Lecture Notes in Computer Science, 2008, ,<br>528-539.                                                                                  | 1.3 | 1         |
| 86 | Preventing Breakthroughs From Breakdowns. , 2008, , .                                                                                                                                       |     | 8         |
| 87 | 1.6.3 Managing Dynamic New Product Development Processes. Incose International Symposium, 2007, 17, 215-229.                                                                                | 0.6 | 14        |
| 88 | Simulating Design Processes with self-iteration activities based on DSM planning. , 2007, , .                                                                                               |     | 11        |
| 89 | Standardization and modularization driven by minimizing overall process effort. CAD Computer Aided Design, 2006, 38, 405-416.                                                               | 2.7 | 56        |
| 90 | Transforming Design Education by Design. , 2005, , 41.                                                                                                                                      |     | 1         |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Data Mining of Design Products and Processes. , 2005, , 1167-1187.                                                                                                         |     | 2         |
| 92  | Decomposing the problem of constrained surface fitting in reverse engineering. CAD Computer Aided Design, 2005, 37, 399-417.                                               | 2.7 | 32        |
| 93  | SOS – subjective objective system for generating optimal product concepts. Design Studies, 2005, 26, 509-533.                                                              | 3.1 | 54        |
| 94  | A framework for organizing the space of decision problems with application to solving subjective, context-dependent problems. Decision Support Systems, 2005, 41, 1-19.    | 5.9 | 25        |
| 95  | Infused Creativity: An Approach to Creative System Design. , 2005, , .                                                                                                     |     | 2         |
| 96  | Managing product design quality under resource constraints. International Journal of Production Research, 2004, 42, 2555-2572.                                             | 7.5 | 55        |
| 97  | CASE-BASED REASONING WITH SUBJECTIVE INFLUENCE KNOWLEDGE. Applied Artificial Intelligence, 2004, 18, 735-760.                                                              | 3.2 | 8         |
| 98  | Infused design. I. Theory. Research in Engineering Design - Theory, Applications, and Concurrent<br>Engineering, 2004, 15, 93.                                             | 2.1 | 54        |
| 99  | Infused design. II. Practice. Research in Engineering Design - Theory, Applications, and Concurrent<br>Engineering, 2004, 15, 108.                                         | 2.1 | 25        |
| 100 | Knowledge system for dropout prevention. International Journal of Educational Management, 2004, 18, 342-350.                                                               | 1.5 | 0         |
| 101 | Topological structures for modeling engineering design processes. Research in Engineering Design -<br>Theory, Applications, and Concurrent Engineering, 2003, 14, 185-199. | 2.1 | 101       |
| 102 | Progressive sharing of modules among product variants. CAD Computer Aided Design, 2003, 35, 791-806.                                                                       | 2.7 | 42        |
| 103 | A Framework for Optimal Product Concept Generation. , 2003, , 459.                                                                                                         |     | Ο         |
| 104 | Synthesis and theory of knowledge: general design theory as a theory of knowledge, and its implication to design. , 2002, , 35-48.                                         |     | 4         |
| 105 | LIFE-CYCLE MANAGEMENT OF INFORMATION AND DECISIONS FOR SYSTEM ANALYSES. Mechanical Systems and Signal Processing, 2001, 15, 513-527.                                       | 8.0 | 3         |
| 106 | A methodology for building neural networks models from empirical engineering data. Engineering Applications of Artificial Intelligence, 2000, 13, 685-694.                 | 8.1 | 21        |
| 107 | Dear Professors G. Rzevski, I. Smith and T. Tomiyama. Advanced Engineering Informatics, 2000, 14, 199.                                                                     | 0.5 | 1         |
| 108 | Improving the Rationale Capture Capability of QFD. Engineering With Computers, 2000, 16, 236-252.                                                                          | 6.1 | 20        |

| #   | Article                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Discussion of "Sequenceâ€Based Prediction in Conceptual Design of Bridges―by Yoram Reich. Journal of<br>Computing in Civil Engineering, 1999, 13, 54-55.                                 | 4.7 | 0         |
| 110 | Sequence-Based Prediction in Conceptual Design of Bridges. Journal of Computing in Civil<br>Engineering, 1999, 13, 54-55.                                                                | 4.7 | 1         |
| 111 | Evaluating machine learning models for engineering problems. Advanced Engineering Informatics, 1999, 13, 257-272.                                                                        | 0.5 | 138       |
| 112 | Building Agility for Developing Agile Design Information Systems. Research in Engineering Design -<br>Theory, Applications, and Concurrent Engineering, 1999, 11, 67-83.                 | 2.1 | 43        |
| 113 | Ensemble modelling or selecting the best model: Many could be better than one. Artificial Intelligence<br>for Engineering Design, Analysis and Manufacturing: AIEDAM, 1999, 13, 377-386. | 1.1 | 23        |
| 114 | Discussion: Constructability Analysis: Machine Learning Approach. Journal of Computing in Civil Engineering, 1998, 12, 164-166.                                                          | 4.7 | 0         |
| 115 | Learning in design: From characterizing dimensions to working systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1998, 12, 161-172.            | 1.1 | 8         |
| 116 | Machine Learning Techniques for Civil Engineering Problems. Computer-Aided Civil and Infrastructure Engineering, 1997, 12, 295-310.                                                      | 9.8 | 115       |
| 117 | Designing the process design process. Computers and Chemical Engineering, 1997, 21, S1-S9.                                                                                               | 3.8 | 42        |
| 118 | The <i>N</i> -Dim Approach to Creating Design Support Systems. , 1997, , .                                                                                                               |     | 24        |
| 119 | Modelling engineering information with machine learning. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1996, 10, 171-174.                          | 1.1 | 2         |
| 120 | Artificial Intelligence in Bridge Engineering. Computer-Aided Civil and Infrastructure Engineering, 1996, 11, 433-445.                                                                   | 9.8 | 6         |
| 121 | Varieties and issues of participation and design. Design Studies, 1996, 17, 165-180.                                                                                                     | 3.1 | 87        |
| 122 | Modeling and Debugging Engineering Decision Procedures with Machine Learning. Journal of Computing in Civil Engineering, 1996, 10, 157-166.                                              | 4.7 | 8         |
| 123 | Computational Quality Function Deployment is Knowledge Intensive Engineering. IFIP Advances in Information and Communication Technology, 1996, , 315-334.                                | 0.7 | 3         |
| 124 | Measuring the value of knowledge. International Journal of Human Computer Studies, 1995, 42, 3-30.                                                                                       | 5.6 | 46        |
| 125 | A critical review of General Design Theory. Research in Engineering Design - Theory, Applications, and<br>Concurrent Engineering, 1995, 7, 1-18.                                         | 2.1 | 70        |
| 126 | Machine learning of material behaviour knowledge from empirical data. Materials & Design, 1995, 16, 251-259.                                                                             | 5.1 | 10        |

| #   | Article                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | System that Learns to Design Cable-Stayed Bridges. Journal of Structural Engineering, 1995, 121, 1090-1100.                                                            | 3.4 | 14        |
| 128 | Layered models of research methodologies. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1994, 8, 263-274.                        | 1.1 | 28        |
| 129 | Annotated bibliography on research methodologies. Artificial Intelligence for Engineering Design,<br>Analysis and Manufacturing: AIEDAM, 1994, 8, 355-366.             | 1.1 | 5         |
| 130 | COMPUTATIONAL SUPPORT FOR SHARED MEMORY IN DESIGN. , 1994, , 219-236.                                                                                                  |     | 5         |
| 131 | The development of Bridger: A methodological study of research on the use of machine learning in design. Advanced Engineering Informatics, 1993, 8, 217-231.           | 0.5 | 22        |
| 132 | A model of aesthetic judgment in design. Advanced Engineering Informatics, 1993, 8, 141-153.                                                                           | 0.5 | 32        |
| 133 | New roles for machine learning in design. Advanced Engineering Informatics, 1993, 8, 165-181.                                                                          | 0.5 | 35        |
| 134 | Equations aren't enough: informal modeling in design. Artificial Intelligence for Engineering Design,<br>Analysis and Manufacturing: AIEDAM, 1993, 7, 257-274.         | 1.1 | 43        |
| 135 | Design knowledge acquisition: task analysis and a partial implementation. International Journal of<br>Human-Computer Studies, 1991, 3, 237-254.                        | 1.2 | 22        |
| 136 | The Formation and Use of Abstract Concepts in Design. , 1991, , 323-353.                                                                                               |     | 44        |
| 137 | COLT'88, proceedings of the 1988 workshop on computational learning theory. Advanced Engineering<br>Informatics, 1991, 6, 103-104.                                     | 0.5 | 0         |
| 138 | Designing integrated learning systems for engineering design. , 1991, , 635-639.                                                                                       |     | 2         |
| 139 | The potential of machine learning techniques for expert systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1989, 3, 175-193. | 1.1 | 13        |
| 140 | Static, vibration and stability analysis of non-uniform beams. Computers and Structures, 1989, 31, 567-573.                                                            | 4.4 | 35        |
| 141 | A comparison of explicit optimal design methods. Computers and Structures, 1989, 32, 175-184.                                                                          | 4.4 | 2         |
| 142 | A decision support model to manage overspecification in system development projects. Journal of Engineering Design, 0, , 1-23.                                         | 2.3 | 4         |
| 143 | Improving Coordination and Collaboration in Connected and Automated Vehicle Development<br>Projects Using Model Based Process Design. , 0, , .                         |     | 4         |