
Camille Lebarbenchon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seasonality of coronavirus shedding in tropical bats. Royal Society Open Science, 2022, 9, 211600.	2.4	15
2	Interaction between Old World fruit bats and humans: From large scale ecosystem services to zoonotic diseases. Acta Tropica, 2022, 231, 106462.	2.0	7
3	Exposure of pelagic seabirds to Toxoplasma gondii in the Western Indian Ocean points to an open sea dispersal of this terrestrial parasite. PLoS ONE, 2021, 16, e0255664.	2.5	6
4	Astrovirus in Reunion Free-Tailed Bat (Mormopterus francoismoutoui). Viruses, 2021, 13, 1524.	3.3	6
5	Investigation of astrovirus, coronavirus and paramyxovirus co-infections in bats in the western Indian Ocean. Virology Journal, 2021, 18, 205.	3.4	14
6	Predator and scavenger movements among and within endangered seabird colonies: Opportunities for pathogen spread. Journal of Applied Ecology, 2020, 57, 367-378.	4.0	11
7	Impact of Annual Bacterial Epizootics on Albatross Population on a Remote Island. EcoHealth, 2020, 17, 194-202.	2.0	10
8	Coinfections in wildlife: Focus on a neglected aspect of infectious disease epidemiology. PLoS Pathogens, 2020, 16, e1008790.	4.7	37
9	Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. Journal of Virology, 2020, 94, .	3.4	16
10	Bat coronavirus phylogeography in the Western Indian Ocean. Scientific Reports, 2020, 10, 6873.	3.3	43
11	Analysis of partial sequences of the RNA-dependent RNA polymerase gene as a tool for genus and subgenus classification of coronaviruses. Journal of General Virology, 2020, 101, 1261-1269.	2.9	10
12	Parasites of seabirds: A survey of effects and ecological implications. Advances in Marine Biology, 2019, 82, 1-50.	1.4	20
13	Future Directions in Conservation Research on Petrels and Shearwaters. Frontiers in Marine Science, 2019, 6, .	2.5	113
14	Isolation and characterisation of 16 polymorphic microsatellite loci for the sooty tern (Onychoprion) Tj ETQq0 0 amplification using two noddies (Anous spp.). Marine Biodiversity, 2019, 49, 509-513.	0 rgBT /C 1.0	verlock 10 Tf 3
15	Bat Astrovirus in Mozambique. Virology Journal, 2018, 15, 104.	3.4	11
16	Bat pathogens hit the road: But which one?. PLoS Pathogens, 2018, 14, e1007134.	4.7	17
17	Avian cholera outbreaks threaten seabird species on Amsterdam Island. PLoS ONE, 2018, 13, e0197291.	2.5	37
18	Astroviruses in bats, Madagascar. Emerging Microbes and Infections, 2017, 6, 1-3.	6.5	18

#	Article	IF	CITATIONS
19	Geolocation Reveals Year-Round at-Sea Distribution and Activity of a Superabundant Tropical Seabird, the Sooty Tern Onychoprion fuscatus. Frontiers in Marine Science, 2017, 4, .	2.5	22
20	Serological evidence for the circulation of flaviviruses in seabird populations of the western Indian Ocean. Epidemiology and Infection, 2016, 144, 652-660.	2.1	9
21	Evidence for wild waterfowl origin of H7N3 influenza A virus detected in captive-reared New Jersey pheasants. Archives of Virology, 2016, 161, 2519-2526.	2.1	6
22	Isolation and phylogenetic characterization of haemagglutinin and neuraminidase genes of H9N2 low pathogenicity avian influenza virus isolated from commercial layers in India. VirusDisease, 2016, 27, 382-386.	2.0	2
23	Assessing the Role of Seabirds in the Ecology of Influenza A Viruses. Avian Diseases, 2016, 60, 378.	1.0	34
24	The role of seabirds of the Iles Eparses as reservoirs and disseminators of parasites and pathogens. Acta Oecologica, 2016, 72, 98-109.	1.1	23
25	Influenza A Virus H5–specific Antibodies in Mute Swans (Cygnus olor) in the USA. Journal of Wildlife Diseases, 2015, 51, 523-526.	0.8	3
26	H7N9 influenza A virus in turkeys in Minnesota. Journal of General Virology, 2015, 96, 269-276.	2.9	12
27	Influenza A Virus on Oceanic Islands: Host and Viral Diversity in Seabirds in the Western Indian Ocean. PLoS Pathogens, 2015, 11, e1004925.	4.7	20
28	lsolation of Type A Influenza Viruses from Red-necked Grebes (<i>Podiceps grisegena</i>). Journal of Wildlife Diseases, 2015, 51, 290-293.	0.8	2
29	Predation of seabird eggs by Common Mynas on Bird Island, Seychelles, and its broader implications. Bulletin of the African Bird Club, 2015, 22, 162-170.	0.1	8
30	Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean. PLoS ONE, 2014, 9, e97185.	2.5	14
31	Massive Infection of Seabird Ticks with Bacterial Species Related to Coxiella burnetii. Applied and Environmental Microbiology, 2014, 80, 3327-3333.	3.1	31
32	Rickettsiaspp. in Seabird Ticks from Western Indian Ocean Islands, 2011–2012. Emerging Infectious Diseases, 2014, 20, 838-842.	4.3	33
33	Trade-offs between and within scales: environmental persistence and within-host fitness of avian influenza viruses. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133051.	2.6	30
34	Survivability of Eurasian H5N1 Highly Pathogenic Avian Influenza Viruses in Water Varies Between Strains. Avian Diseases, 2014, 58, 453-457.	1.0	19
35	Strain-related variation in the persistence of influenza A virus in three types of water: distilled water, filtered surface water, and intact surface water. Virology Journal, 2013, 10, 13.	3.4	24
36	Absence of Coronaviruses, Paramyxoviruses, and Influenza A Viruses in Seabirds in the Southwestern Indian Ocean. Journal of Wildlife Diseases, 2013, 49, 1056-1059.	0.8	10

#	Article	IF	CITATIONS
37	Evaluation of a commercial enzymeâ€linked immunosorbent assay for detection of antibodies against the H5 subtype of <i>Influenza A virus</i> in waterfowl. Influenza and Other Respiratory Viruses, 2013, 7, 1237-1240.	3.4	5
38	lsolation of Influenza A Viruses from Wild Ducks and Feathers in Minnesota (2010–2011). Avian Diseases, 2013, 57, 677-680.	1.0	23
39	Infectivity of Avian Influenza Virus-Positive Field Samples for Mallards: What Do Our Diagnostic Results Mean?. Journal of Wildlife Diseases, 2013, 49, 180-185.	0.8	14
40	Evolution of Influenza A Virus H7 and N9 Subtypes, Eastern Asia. Emerging Infectious Diseases, 2013, 19, 1635-8.	4.3	16
41	Reassortant influenza A viruses in wild duck populations: effects on viral shedding and persistence in water. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3967-3975.	2.6	40
42	INTESTINAL EXCRETION OF A WILD BIRD-ORIGIN H3N8 LOW PATHOGENIC AVIAN INFLUENZA VIRUS IN MALLARDS (ANAS PLATYRHYNCHOS). Journal of Wildlife Diseases, 2012, 48, 991-998.	0.8	30
43	Identification of novel paramyxoviruses in insectivorous bats of the Southwest Indian Ocean. Virus Research, 2012, 170, 159-163.	2.2	48
44	Susceptibility of Avian Species to North American H13 Low Pathogenic Avian Influenza Viruses. Avian Diseases, 2012, 56, 969-975.	1.0	39
45	Comparison of two commercial enzyme-linked immunosorbent assays for detection of <i>Influenza A virus</i> antibodies. Journal of Veterinary Diagnostic Investigation, 2012, 24, 161-165.	1.1	25
46	Birds and Viruses at a Crossroad - Surveillance of Influenza A Virus in Portuguese Waterfowl. PLoS ONE, 2012, 7, e49002.	2.5	12
47	Viral Replication, Persistence in Water and Genetic Characterization of Two Influenza A Viruses Isolated from Surface Lake Water. PLoS ONE, 2011, 6, e26566.	2.5	55
48	Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin. Virology Journal, 2011, 8, 328.	3.4	40
49	Water-seeking behavior in worm-infected crickets and reversibility of parasitic manipulation. Behavioral Ecology, 2011, 22, 392-400.	2.2	40
50	Phylogeography of the weasel (Mustela nivalis) in the western-Palaearctic region: combined effects of glacial events and human movements. Heredity, 2010, 105, 449-462.	2.6	27
51	Persistence of Highly Pathogenic Avian Influenza Viruses in Natural Ecosystems. Emerging Infectious Diseases, 2010, 16, 1057-1062.	4.3	74
52	Influenza A Viruses in American White Pelican (Pelecanus erythrorhynchos). Journal of Wildlife Diseases, 2010, 46, 1284-1289.	0.8	4
53	Avian Influenza Circulation in the Camargue (South of France) During the 2006–07 Season. Avian Diseases, 2010, 54, 446-449.	1.0	21
54	Spread of Avian Influenza Viruses by Common Teal (Anas crecca) in Europe. PLoS ONE, 2009, 4, e7289.	2.5	45

#	Article	IF	CITATIONS
55	The Potential Distance of Highly Pathogenic Avian Influenza Virus Dispersal by Mallard, Common Teal and Eurasian Pochard. EcoHealth, 2009, 6, 449-457.	2.0	16
56	Molecular surveillance for avian influenza A virus in king penguins (Aptenodytes patagonicus). Polar Biology, 2009, 32, 663.	1.2	10
57	Water-borne transmission drives avian influenza dynamics in wild birds: The case of the 2005–2006 epidemics in the Camargue area. Infection, Genetics and Evolution, 2009, 9, 800-805.	2.3	105
58	The ecological significance of manipulative parasites. Trends in Ecology and Evolution, 2009, 24, 41-48.	8.7	234
59	H9N2 avian influenza virus in a Mediterranean gull. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2009, 03, .	0.1	13
60	Evolution of pathogens in a manâ€made world. Molecular Ecology, 2008, 17, 475-484.	3.9	72
61	H9N2 avian influenza virus in a Mediterranean gull. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2008, 3, 121-3.	0.1	13
62	Influenza A Virus in Birds during Spring Migration in the Camargue, France. Journal of Wildlife Diseases, 2007, 43, 789-793.	0.8	30
63	Absence of detection of highly pathogenic H5N1 in migratory waterfowl in southern France in 2005–2006. Infection, Genetics and Evolution, 2007, 7, 604-608.	2.3	14
64	Recent expansion of highly pathogenic avian influenza H5N1: a critical review. Ibis, 2007, 149, 202-214.	1.9	132
65	Parasitological Consequences of Overcrowding in Protected Areas. EcoHealth, 2007, 3, 303-307.	2.0	37
66	Genetic variation of the weasel (Mustela nivalis) in Corsica based on mitochondrial control region sequences. Mammalian Biology, 2006, 71, 164-171.	1.5	9
67	Hairworm anti-predator strategy: a study of causes and consequences. Parasitology, 2006, 133, 631.	1.5	17
68	The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics, 2006, 6, 5577-5596.	2.2	87
69	Parasite survives predation on its host. Nature, 2006, 440, 756-756.	27.8	38
70	Do distantly related parasites rely on the same proximate factors to alter the behaviour of their hosts?. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2869-2877.	2.6	45