Clara Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2836643/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unraveling the relevance of carbon felts surface modification during electrophoretic deposition of nanocarbons on their performance as electrodes for the VO2+/VO2+ redox couple. Applied Surface Science, 2021, 569, 151095.	6.1	10
2	No genome-wide DNA methylation changes found associated with medium-term reduced graphene oxide exposure in human lung epithelial cells. Epigenetics, 2020, 15, 283-293.	2.7	6
3	Reduced graphene oxide membranes in ocular regenerative medicine. Materials Science and Engineering C, 2020, 114, 111075.	7.3	12
4	Insights on the Behavior of Imidazolium Ionic Liquids as Electrolytes in Carbon-Based Supercapacitors: An Applied Electrochemical Approach. Journal of Physical Chemistry C, 2020, 124, 15818-15830.	3.1	34
5	Multifunctional Silicone Rubber Nanocomposites by Controlling the Structure and Morphology of Graphene Material. Polymers, 2019, 11, 449.	4.5	25
6	Main structural features of graphene materials controlling the transport properties of epoxy resin-based composites. European Polymer Journal, 2018, 101, 56-65.	5.4	16
7	LiFePO ₄ /Mesoporous Carbon Hybrid Supercapacitor Based on LiTFSI/Imidazolium Ionic Liquid Electrolyte. Journal of Physical Chemistry C, 2018, 122, 1456-1465.	3.1	30
8	Mechanism and Stability of a Redox Supercapacitor Based on Methylene Blue: Effects of Degradation of the Redox Shuttle. ACS Applied Energy Materials, 2018, 1, 2306-2316.	5.1	18
9	High value activated carbons from waste polystyrene foams. Microporous and Mesoporous Materials, 2018, 267, 181-184.	4.4	57
10	Influence of the electrophoretic deposition parameters on the formation of suspended graphene-based films. Materials and Design, 2018, 160, 58-64.	7.0	15
11	Morphological changes in graphene materials caused by solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 558, 73-79.	4.7	9
12	Unusual flexibility of mesophase pitch-derived carbon materials: An approach to the synthesis of graphene. Carbon, 2017, 115, 539-545.	10.3	31
13	Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids. Fuel, 2017, 203, 253-260.	6.4	16
14	Role of quinoline insoluble particles during the processing of coal tars to produce graphene materials. Fuel, 2017, 206, 99-106.	6.4	20
15	Customizing thermally-reduced graphene oxides for electrically conductive or mechanical reinforced epoxy nanocomposites. European Polymer Journal, 2017, 93, 1-7.	5.4	24
16	Experimental and Statistical Optimization of the Tensile Strength of Carbon Fibers from Pitches with Different Composition. Industrial & Engineering Chemistry Research, 2017, 56, 3243-3250.	3.7	3
17	Biliquid Supercapacitors: a Simple and New Strategy to Enhance Energy Density in Asymmetric/Hybrid Devices. Electrochimica Acta, 2017, 254, 384-392.	5.2	16
18	Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application. Journal of Power Sources, 2017, 338, 155-162.	7.8	105

Clara Blanco

#	Article	IF	CITATIONS
19	Influence of the carbonization temperature on the mechanical properties of thermoplastic polymer derived C/C-SiC composites. Journal of the European Ceramic Society, 2017, 37, 523-529.	5.7	39
20	Enhancing energy density of carbon-based supercapacitors using Prussian Blue modified positive electrodes. Electrochimica Acta, 2016, 212, 848-855.	5.2	29
21	Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes Journal of Physics: Conference Series, 2016, 712, 012052.	0.4	1
22	Cokes of different origin as precursors of graphene oxide. Fuel, 2016, 166, 400-403.	6.4	33
23	Enhancing the hydrogen transfer catalytic activity of hybrid carbon nanotube-based NHC–iridium catalysts by increasing the oxidation degree of the nanosupport. Catalysis Science and Technology, 2016, 6, 5504-5514.	4.1	20
24	Optimization of a carbon-based hybrid energy storage device with cerium (III) sulfate as redox electrolyte. Journal of Power Sources, 2016, 309, 50-55.	7.8	6
25	Graphene anchored palladium complex as efficient and recyclable catalyst in the Heck cross-coupling reaction. Journal of Molecular Catalysis A, 2016, 416, 140-146.	4.8	43
26	Effect of structural differences of carbon nanotubes and graphene based iridium-NHC materials on the hydrogen transfer catalytic activity. Carbon, 2016, 96, 66-74.	10.3	25
27	The influence of carbon nanotubes characteristics in their performance as positive electrodes in vanadium redox flow batteries. Sustainable Energy Technologies and Assessments, 2015, 9, 105-110.	2.7	25
28	New alternatives to graphite for producing graphene materials. Carbon, 2015, 93, 812-818.	10.3	37
29	CO2 adsorption capacity and kinetics in nitrogen-enriched activated carbon fibers prepared by different methods. Chemical Engineering Journal, 2015, 281, 704-712.	12.7	63
30	Enhanced energy density of carbon-based supercapacitors using Cerium (III) sulphate as inorganic redox electrolyte. Electrochimica Acta, 2015, 168, 277-284.	5.2	38
31	Tuning graphene properties by a multi-step thermal reduction process. Carbon, 2015, 90, 160-163.	10.3	21
32	Graphene–NHC–iridium hybrid catalysts built through –OH covalent linkage. Carbon, 2015, 83, 21-31.	10.3	31
33	An approach to classification and capacitance expressions in electrochemical capacitors technology. Physical Chemistry Chemical Physics, 2015, 17, 1084-1092.	2.8	181
34	A novel approach for the production of chemically activated carbon fibers. Chemical Engineering Journal, 2015, 260, 463-468.	12.7	39
35	N-enriched ACF from coal-based pitch blended with urea-based resin for CO2 capture. Microporous and Mesoporous Materials, 2015, 201, 10-16.	4.4	23
36	Chemicals from Coal Coking. Chemical Reviews, 2014, 114, 1608-1636.	47.7	166

#	Article	IF	CITATIONS
37	Tailoring micro-mesoporosity in activated carbon fibers to enhance SO2 catalytic oxidation. Journal of Colloid and Interface Science, 2014, 428, 36-40.	9.4	18
38	Graphite Felt Modified with Bismuth Nanoparticles as Negative Electrode in a Vanadium Redox Flow Battery. ChemSusChem, 2014, 7, 914-918.	6.8	113
39	Activated carbon fibers prepared directly from stabilized fibers for use as electrodes in supercapacitors. Materials Letters, 2014, 136, 214-217.	2.6	27
40	A multi-step exfoliation approach to maintain the lateral size of graphene oxide sheets. Carbon, 2014, 80, 830-832.	10.3	14
41	Evaluating capacitive deionization for water desalination by direct determination of chloride ions. Desalination, 2014, 344, 396-401.	8.2	11
42	Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon, 2013, 65, 156-164.	10.3	345
43	Optimization of the size and yield of graphene oxide sheets in the exfoliation step. Carbon, 2013, 63, 576-578.	10.3	77
44	Correct use of the Langmuir–Hinshelwood equation for proving the absence of a synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Carbon, 2013, 55, 62-69.	10.3	146
45	Graphite oxide-based graphene materials as positive electrodes in vanadium redox flow batteries. Journal of Power Sources, 2013, 241, 349-354.	7.8	57
46	Thermally reduced graphite and graphene oxides in VRFBs. Nano Energy, 2013, 2, 1322-1328.	16.0	37
47	Critical temperatures in the synthesis of graphene-like materials by thermal exfoliation–reduction of graphite oxide. Carbon, 2013, 52, 476-485.	10.3	236
48	Voltage dependence of carbon-based supercapacitors for pseudocapacitance quantification. Electrochimica Acta, 2013, 95, 225-229.	5.2	34
49	Enhanced Hydrogen-Transfer Catalytic Activity of Iridium N-Heterocyclic Carbenes by Covalent Attachment on Carbon Nanotubes. ACS Catalysis, 2013, 3, 1307-1317.	11.2	77
50	Influence of the alignment degree of CVD-grown carbon nanotubes on their functionalization and adsorption capacity. Diamond and Related Materials, 2013, 37, 1-7.	3.9	6
51	An insight into the polymerization of anthracene oil to produce pitch using nuclear magnetic resonance. Fuel, 2013, 105, 471-476.	6.4	34
52	Tailored graphene materials by chemical reduction of graphene oxides of different atomic structure. RSC Advances, 2012, 2, 9643.	3.6	51
53	Characterisation and feasibility as carbon fibre precursors of isotropic pitches derived from anthracene oil. Fuel, 2012, 101, 9-15.	6.4	30
54	Supercapacitor modified with methylene blue as redox active electrolyte. Electrochimica Acta, 2012, 83, 241-246.	5.2	148

#	Article	IF	CITATIONS
55	Carbon nanowalls thin films as nanostructured electrode materials in vanadium redox flow batteries. Nano Energy, 2012, 1, 833-839.	16.0	79
56	The effect of the parent graphite on the structure of graphene oxide. Carbon, 2012, 50, 275-282.	10.3	188
57	Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries. Carbon, 2012, 50, 828-834.	10.3	129
58	Further studies on the use of Raman spectroscopy and X-ray diffraction for the characterisation of TiC-containing carbon–carbon composites. Carbon, 2012, 50, 3240-3246.	10.3	12
59	Fabrication of C/SiC composites by combining liquid infiltration process and spark plasma sintering technique. Ceramics International, 2012, 38, 2171-2175.	4.8	23
60	Novel coal-based precursors for cokes with highly oriented microstructures. Fuel, 2012, 95, 400-406.	6.4	10
61	Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre preparation. Fuel Processing Technology, 2012, 93, 99-104.	7.2	45
62	Mechanisms of Energy Storage in Carbon-Based Supercapacitors Modified with a Quinoid Redox-Active Electrolyte. Journal of Physical Chemistry C, 2011, 115, 17606-17611.	3.1	263
63	High performance activated carbon for benzene/toluene adsorption from industrial wastewater. Journal of Hazardous Materials, 2011, 192, 1525-1532.	12.4	58
64	Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery. Electrochemistry Communications, 2011, 13, 1379-1382.	4.7	164
65	Carbon materials as electrodes for electrosorption of NaCl inÂaqueous solutions. Adsorption, 2011, 17, 467-471.	3.0	34
66	Towards a Further Generation of Highâ€Energy Carbonâ€Based Capacitors by Using Redoxâ€Active Electrolytes. Angewandte Chemie - International Edition, 2011, 50, 1699-1701.	13.8	389
67	Influence of titanium carbide on the interlaminar shear strength of carbon fibre laminate composites. Composites Science and Technology, 2011, 71, 101-106.	7.8	2
68	Redox-active electrolyte for carbon nanotube-based electric double layer capacitors. Electrochimica Acta, 2011, 56, 3401-3405.	5.2	159
69	A unified process for preparing mesophase and isotropic material from anthracene oil-based pitch. Fuel Processing Technology, 2011, 92, 421-427.	7.2	14
70	Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology. Fuel Processing Technology, 2011, 92, 1987-1992.	7.2	13
71	Behaviour of Ti-doped CFCs under thermal fatigue tests. Fusion Engineering and Design, 2011, 86, 121-125.	1.9	4
72	Improvement of thermal conductivity in 2D carbon–carbon composites by doping with TiC nanoparticles. Materials Chemistry and Physics, 2010, 122, 102-107.	4.0	18

#	Article	IF	CITATIONS
73	Oxidation behaviour of magnesia–carbon materials prepared with petroleum pitch as binder. Journal of Analytical and Applied Pyrolysis, 2010, 88, 207-212.	5.5	9
74	The effect of the substrate on pitch wetting behaviour. Fuel Processing Technology, 2010, 91, 1373-1377.	7.2	23
75	Evaluation of novel Ti-doped 3D carbon–carbon composites under transient thermal loads. Fusion Engineering and Design, 2010, 85, 813-818.	1.9	0
76	Comparison between Electrochemical Capacitors Based on NaOH- and KOH-Activated Carbons. Energy & Fuels, 2010, 24, 3422-3428.	5.1	57
77	Capacitive Deionization of NaCl Solutions with Modified Activated Carbon Electrodes. Energy & Fuels, 2010, 24, 3329-3333.	5.1	93
78	Development of titanium-doped carbon–carbon composites. Journal of Materials Science, 2009, 44, 2525-2532.	3.7	7
79	Thermal curing of mesophase pitch: An alternative to oxidative stabilisation for the development of carbon–carbon composites. Journal of Analytical and Applied Pyrolysis, 2009, 86, 28-32.	5.5	7
80	Long-term cycling of carbon-based supercapacitors in aqueous media. Electrochimica Acta, 2009, 54, 4481-4486.	5.2	95
81	An activated carbon monolith as an electrode material for supercapacitors. Carbon, 2009, 47, 195-200.	10.3	158
82	Manufacturing and high heat-flux testing of brazed actively cooled mock-ups with Ti-doped graphite and CFC as plasma-facing materials. Physica Scripta, 2009, T138, 014062.	2.5	5
83	Preparation of Low Toxicity Pitches by Thermal Oxidative Condensation of Anthracene Oil. Environmental Science & Technology, 2009, 43, 8126-8132.	10.0	30
84	Behaviour of Ti-doped 3D carbon fibre composites under intense thermal shock tests. Physica Scripta, 2009, T138, 014055.	2.5	3
85	A study of Faradaic phenomena in activated carbon by means of macroelectrodes and single particle electrodes. Journal of Electroanalytical Chemistry, 2008, 618, 33-38.	3.8	5
86	Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors. Journal of Electroanalytical Chemistry, 2008, 618, 17-23.	3.8	21
87	Enhanced life-cycle supercapacitors by thermal treatment of mesophase-derived activated carbons. Electrochimica Acta, 2008, 54, 305-310.	5.2	54
88	Carbon molecular sieves as model active electrode materials in supercapacitors. Microporous and Mesoporous Materials, 2008, 110, 431-435.	4.4	28
89	Mesophase from Anthracene Oil-Based Pitches. Energy & Fuels, 2008, 22, 4146-4150.	5.1	22
90	An insight into Faradaic phenomena in activated carbon investigated by means of the microelectrode technique. Electrochemistry Communications, 2007, 9, 2320-2324.	4.7	4

#	Article	IF	CITATIONS
91	An insight into pitch/substrate wetting behaviour. The effect of the substrate processing temperature on pitch wetting capacity. Fuel, 2007, 86, 1046-1052.	6.4	18
92	Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors. Electrochimica Acta, 2007, 52, 4969-4973.	5.2	172
93	The adsorption of chromium (VI) from industrial wastewater by acid and base-activated lignocellulosic residues. Journal of Hazardous Materials, 2007, 144, 400-405.	12.4	67
94	Influence of electrode preparation on the electrochemical behaviour of carbon-based supercapacitors. Journal of Applied Electrochemistry, 2007, 37, 717-721.	2.9	43
95	Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors. Carbon, 2006, 44, 441-446.	10.3	91
96	Influence of mesophase activation conditions on the specific capacitance of the resulting carbons. Journal of Power Sources, 2006, 156, 719-724.	7.8	22
97	Chemical activation of carbon mesophase pitches. Journal of Colloid and Interface Science, 2006, 298, 341-347.	9.4	46
98	Thermal degradation of lignocellulosic materials treated with several acids. Journal of Analytical and Applied Pyrolysis, 2005, 74, 337-343.	5.5	27
99	Pyrolysis behaviour of pitches modified with different additives. Journal of Analytical and Applied Pyrolysis, 2005, 73, 276-283.	5.5	17
100	Pitch/coke wetting behaviour. Fuel, 2005, , .	6.4	9
101	Composite electrode materials for lithium-ion batteries obtained by metal oxide addition to petroleum vacuum residua. Carbon, 2005, 43, 923-936.	10.3	12
102	Lignocellulose/pitch based composites. Composites Part A: Applied Science and Manufacturing, 2005, 36, 649-657.	7.6	14
103	Improvement of the thermal stability of lignocellulosic materials by treatment with sulphuric acid and potassium hydroxide. Journal of Analytical and Applied Pyrolysis, 2004, 72, 131-139.	5.5	22
104	Monitoring coal-tar pitch composition changes during air-blowing by gas chromatography. Journal of Chromatography A, 2004, 1026, 231-238.	3.7	19
105	The stabilisation of carbon fibres studied by micro-thermal analysis. Carbon, 2003, 41, 165-171.	10.3	49
106	A novel method to obtain a petroleum-derived mesophase pitch suitable as carbon fibre precursor. Carbon, 2003, 41, 445-452.	10.3	42
107	Mesophase development in petroleum and coal-tar pitches and their blends. Journal of Analytical and Applied Pyrolysis, 2003, 68-69, 409-424.	5.5	60
108	Relationship between chemical composition and pyrolysis behaviour of a medium temperature pitch (or Lurgi-gasifier pitch). Fuel Processing Technology, 2003, 84, 63-77.	7.2	15

#	Article	IF	CITATIONS
109	Influence of fibre–matrix interface on the fracture behaviour of carbon-carbon composites. Journal of the European Ceramic Society, 2003, 23, 2857-2866.	5.7	54
110	Effects of Air-Blowing on the Molecular Size and Structure of Coal-Tar Pitch Components. Energy & Fuels, 2002, 16, 1540-1549.	5.1	24
111	Study of carbon fibres and carbon-carbon composites by scanning thermal microscopy. Journal of Microscopy, 2002, 205, 21-32.	1.8	20
112	Pyrolysis behaviour of mesophase and isotropic phases isolated from the same pitch. Journal of Analytical and Applied Pyrolysis, 2002, 63, 251-265.	5.5	21
113	Development of new carbon honeycomb structures from cellulose and pitch. Carbon, 2002, 40, 541-550.	10.3	20
114	Micro-thermal analysis as a technique for in situ characterisation of the softening behaviour of the isotropic phase and mesophase in thermally treated pitches. Carbon, 2002, 40, 132-135.	10.3	8
115	Large diameter carbon fibres from mesophase pitch. Carbon, 2002, 40, 2109-2116.	10.3	46
116	A study of pitch-based precursors for general purpose carbon fibres. Carbon, 2002, 40, 2719-2725.	10.3	70
117	Texture studies of carbon and graphite tapes by XRD texture goniometry. Journal of Materials Science, 2002, 37, 5283-5290.	3.7	17
118	On the Chemical Composition of Thermally Treated Coal-Tar Pitches. Energy & Fuels, 2001, 15, 214-223.	5.1	21
119	Structural Characterization of High-Softening-Point Pitches By Oxidation with RuO4. Energy & Fuels, 2001, 15, 128-134.	5.1	7
120	A comparative study of air-blown and thermally treated coal-tar pitches. Carbon, 2000, 38, 517-523.	10.3	73
121	Pitch-based carbon composites with granular reinforcements for frictional applications. Carbon, 2000, 38, 1043-1051.	10.3	27
122	Separation and characterization of the isotropic phase and co-existing mesophase in thermally treated coal-tar pitches. Carbon, 2000, 38, 1169-1176.	10.3	23
123	Microstructure and properties of pitch-based carbon composites. Journal of Microscopy, 1999, 196, 213-224.	1.8	11
124	Contribution of the isotropic phase to the rheology of partially anisotropic coal-tar pitches. Carbon, 1999, 37, 1059-1064.	10.3	16
125	A novel method for mesophase separation. Carbon, 1997, 35, 1191-1193.	10.3	23