Erika L Pearce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/283433/publications.pdf

Version: 2024-02-01

		36691		56606
88	26,306	53		87
papers	citations	h-index		g-index
93	93	93		33077
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell, 2015, 162, 1229-1241.	13.5	2,158
2	Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 2013, 153, 1239-1251.	13.5	1,715
3	Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature, 2014, 515, 577-581.	13.7	1,705
4	Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature, 2009, 460, 103-107.	13.7	1,316
5	Metabolic Pathways in Immune Cell Activation and Quiescence. Immunity, 2013, 38, 633-643.	6.6	1,271
6	Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+ T Cell Memory Development. Immunity, 2012, 36, 68-78.	6.6	1,208
7	Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science, 2013, 342, 1242454.	6.0	1,070
8	Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell, 2016, 166, 63-76.	13.5	1,025
9	T cell metabolism drives immunity. Journal of Experimental Medicine, 2015, 212, 1345-1360.	4.2	937
10	Control of Effector CD8+ T Cell Function by the Transcription Factor Eomesodermin. Science, 2003, 302, 1041-1043.	6.0	896
11	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
12	TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKÉ supports the anabolic demands of dendritic cell activation. Nature Immunology, 2014, 15, 323-332.	7.0	861
13	Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nature Immunology, 2014, 15, 846-855.	7.0	856
14	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	6.6	650
15	Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annual Review of Immunology, 2018, 36, 461-488.	9.5	537
16	The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses InÂVivo. Immunity, 2015, 42, 41-54.	6.6	505
17	The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell, 2016, 165, 1708-1720.	13.5	484
18	Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood, 2012, 120, 1422-1431.	0.6	476

#	Article	IF	Citations
19	Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity, 2016, 45, 817-830.	6.6	453
20	Metabolic switching and fuel choice during Tâ€ɛell differentiation and memory development. Immunological Reviews, 2012, 249, 27-42.	2.8	429
21	CD8 memory T cells have a bioenergetic advantage that underlies their rapid recall ability. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14336-14341.	3.3	428
22	Autophagy is essential for effector CD8+ T cell survival and memory formation. Nature Immunology, 2014, 15, 1152-1161.	7.0	367
23	Emerging concepts of T cell metabolism as a target of immunotherapy. Nature Immunology, 2016, 17, 364-368.	7.0	289
24	Amino Assets: How Amino Acids Support Immunity. Cell Metabolism, 2020, 32, 154-175.	7.2	256
25	Type 1 Interferons Induce Changes in Core Metabolism that Are Critical for Immune Function. Immunity, 2016, 44, 1325-1336.	6.6	248
26	Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends in Immunology, 2018, 39, 6-18.	2.9	248
27	Metabolism in T cell activation and differentiation. Current Opinion in Immunology, 2010, 22, 314-320.	2.4	244
28	Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation. Cell Metabolism, 2019, 30, 352-363.e8.	7.2	223
29	Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nature Medicine, 2018, 24, 282-291.	15.2	216
30	Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nature Immunology, 2016, 17, 656-665.	7.0	215
31	Mitochondrial Integrity Regulated by Lipid Metabolism Is a Cell-Intrinsic Checkpoint for Treg Suppressive Function. Cell Metabolism, 2020, 31, 422-437.e5.	7.2	215
32	Mitochondrial Pyruvate Import Promotes Long-Term Survival of Antibody-Secreting Plasma Cells. Immunity, 2016, 45, 60-73.	6.6	212
33	Mitochondrial Priming by CD28. Cell, 2017, 171, 385-397.e11.	13.5	212
34	Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Reports, 2019, 27, 2063-2074.e5.	2.9	205
35	Targeting T cell metabolism for therapy. Trends in Immunology, 2015, 36, 71-80.	2.9	204
36	Metabolic modeling of single Th17 cells reveals regulators of autoimmunity. Cell, 2021, 184, 4168-4185.e21.	13.5	203

#	Article	IF	Citations
37	Generation of CD8 T Cell Memory Is Regulated by IL-12. Journal of Immunology, 2007, 179, 2074-2081.	0.4	192
38	Metabolic interventions in the immune response to cancer. Nature Reviews Immunology, 2019, 19, 324-335.	10.6	190
39	Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species–mediated DNA damage. Nature Immunology, 2019, 20, 420-432.	7.0	169
40	Oncogenic JAK2 $<$ sup $>$ V617F $<$ /sup $>$ causes PD-L1 expression, mediating immune escape in myeloproliferative neoplasms. Science Translational Medicine, 2018, 10, .	5.8	166
41	Pharmacological Activation of Pyruvate Kinase M2 Inhibits CD4+ T Cell Pathogenicity and Suppresses Autoimmunity. Cell Metabolism, 2020, 31, 391-405.e8.	7.2	164
42	Inhibition of Mechanistic Target of Rapamycin Promotes Dendritic Cell Activation and Enhances Therapeutic Autologous Vaccination in Mice. Journal of Immunology, 2012, 189, 2151-2158.	0.4	159
43	Triacylglycerol synthesis enhances macrophage inflammatory function. Nature Communications, 2020, 11, 4107.	5.8	127
44	Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer. Current Protocols in Immunology, 2016, 113, 3.16B.1-3.16B.14.	3.6	123
45	Polyamine metabolism is a central determinant of helper TÂcell lineage fidelity. Cell, 2021, 184, 4186-4202.e20.	13.5	121
46	Mechanistic Target of Rapamycin Inhibition Extends Cellular Lifespan in Dendritic Cells by Preserving Mitochondrial Function. Journal of Immunology, 2014, 193, 2821-2830.	0.4	116
47	Ancillary Activity: Beyond Core Metabolism in Immune Cells. Cell Metabolism, 2017, 26, 131-141.	7.2	95
48	c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nature Immunology, 2014, 15, 884-893.	7.0	85
49	Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nature Metabolism, 2020, 2, 703-716.	5.1	83
50	Mitochondrial Membrane Potential Regulates Nuclear Gene Expression in Macrophages Exposed to Prostaglandin E2. Immunity, 2018, 49, 1021-1033.e6.	6.6	75
51	Driving immunity: all roads lead to metabolism. Nature Reviews Immunology, 2018, 18, 81-82.	10.6	71
52	Metabolic reprogramming of donor T cells enhances graft-versus-leukemia effects in mice and humans. Science Translational Medicine, 2020, 12, .	5.8	70
53	Targeting memory T cell metabolism to improve immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	61
54	A common framework of monocyte-derived macrophage activation. Science Immunology, 2022, 7, eabl7482.	5.6	58

#	Article	IF	Citations
55	TRAF6 inhibits Th17 differentiation and TGF-β–mediated suppression of IL-2. Blood, 2010, 115, 4750-4757.	0.6	56
56	Making sense of inflammation, epigenetics, and memory CD8 + Tâ \in cell differentiation in the context of infection. Immunological Reviews, 2006, 211, 197-202.	2.8	50
57	Th1 and Th2 Cells Help CD8 T-Cell Responses. Infection and Immunity, 2007, 75, 2291-2296.	1.0	49
58	Fatty Acid Oxidation Is Essential for Egg Production by the Parasitic Flatworm Schistosoma mansoni. PLoS Pathogens, 2012, 8, e1002996.	2.1	46
59	Functional Characterization of MHC Class II-Restricted CD8+CD4â^' and CD8â^'CD4â^' T Cell Responses to Infection in CD4â^'/â^' Mice. Journal of Immunology, 2004, 173, 2494-2499.	0.4	45
60	IL-33 expression in response to SARS-CoV-2 correlates with seropositivity in COVID-19 convalescent individuals. Nature Communications, 2021, 12, 2133.	5.8	44
61	Cutting Edge: Requirement for TRAF6 in the Induction of T Cell Anergy. Journal of Immunology, 2008, 180, 34-38.	0.4	40
62	Dynamic Cardiolipin Synthesis Is Required for CD8+ T Cell Immunity. Cell Metabolism, 2020, 32, 981-995.e7.	7.2	32
63	Fever supports CD8 ⁺ effector T cell responses by promoting mitochondrial translation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
64	The importance of methionine metabolism. ELife, 2019, 8, .	2.8	28
65	Plasmacytoid dendritic cell activation is dependent on coordinated expression of distinct amino acid transporters. Immunity, 2021, 54, 2514-2530.e7.	6.6	28
66	Bile acids regulate intestinal antigen presentation and reduce graft-versus-host disease without impairing the graft-versus-leukemia effect. Haematologica, 2021, 106, 2131-2146.	1.7	26
67	Sulfur sequestration promotes multicellularity during nutrient limitation. Nature, 2021, 591, 471-476.	13.7	24
68	Caught in the cROSsfire: GSH Controls T Cell Metabolic Reprogramming. Immunity, 2017, 46, 525-527.	6.6	23
69	IL-18 Synergizes with IL-7 To Drive Slow Proliferation of Naive CD8 T Cells by Costimulating Self-Peptide–Mediated TCR Signals. Journal of Immunology, 2014, 193, 3992-4001.	0.4	21
70	Expanding the role of metabolism in T cells. Science, 2015, 348, 976-977.	6.0	21
71	Intracellular infection and immune system cues rewire adipocytes to acquire immune function. Cell Metabolism, 2022, 34, 747-760.e6.	7.2	21
72	Potassium shapes antitumor immunity. Science, 2019, 363, 1395-1396.	6.0	19

#	Article	IF	CITATIONS
73	Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism. Cell Death and Differentiation, 2021, 28, 2194-2206.	5.0	18
74	Metabolic Dynamics of In Vitro CD8+ T Cell Activation. Metabolites, 2021, 11, 12.	1.3	18
75	EBF1 and Pax5 safeguard leukemic transformation by limiting IL-7 signaling, Myc expression, and folate metabolism. Genes and Development, 2020, 34, 1503-1519.	2.7	15
76	Host dysbiosis negatively impacts IL-9-producing T-cell differentiation and antitumour immunity. British Journal of Cancer, 2020, 123, 534-541.	2.9	14
77	Tonic TCR Signaling Inversely Regulates the Basal Metabolism of CD4+ T Cells. ImmunoHorizons, 2020, 4, 485-497.	0.8	14
78	Fatty acid synthesis tips the TH17-Treg cell balance. Nature Medicine, 2014, 20, 1235-1236.	15.2	13
79	Metabolism as a driver of immunity. Nature Reviews Immunology, 2021, 21, 618-619.	10.6	12
80	Glucose makes Treg lose their temper. Cancer Cell, 2021, 39, 460-462.	7.7	8
81	Helper T Cell Differentiation and the Problem of Cellular Inheritance. Immunologic Research, 2003, 27, 463-468.	1.3	4
82	A Sweet Deal for Diabetes. Trends in Endocrinology and Metabolism, 2018, 29, 1-2.	3.1	4
83	Appetite for Arginine: Metabolic Control of Macrophage Hunger. Cell Metabolism, 2020, 31, 441-442.	7.2	4
84	T cell metabolism drives immunity. Journal of Cell Biology, 2015, 210, 21040IA169.	2.3	4
85	When Hexokinase Gets that NAG-ing Feeling…. Cell Metabolism, 2016, 24, 198-200.	7.2	3
86	To facitinib suppresses IL- 10 /IL- 10 R signaling and modulates host defense responses in human macrophages. Journal of Investigative Dermatology, 2021, , .	0.3	3
87	How to make a better TÂcell: inÂvivo CRISPR screens have some answers. Cell, 2021, 184, 1135-1136.	13.5	0
88	Research Techniques Made Simple: Profiling Cellular Energy Metabolism. Journal of Investigative Dermatology, 2021, 141, 2767-2774.e2.	0.3	0