Narendra Kurra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833972/publications.pdf

Version: 2024-02-01

54 papers 6,178 citations

94433 37 h-index 52 g-index

54 all docs 54 docs citations

54 times ranked

7296 citing authors

#	Article	IF	CITATIONS
1	Supercapacitors. , 2022, , 383-417.		7
2	Mapping (Pseudo)Capacitive Charge Storage Dynamics in Titanium Carbide MXene Electrodes in Aqueous Electrolytes Using 3D Bode Analysis. Energy Storage Materials, 2021, 39, 347-353.	18.0	44
3	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	14.6	81
4	Layer-by-Layer Assembly-Based Heterointerfaces for Modulating the Electronic Properties of Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Applied Materials & amp; Interfaces, 2021, 13, 59104-59114.	8.0	4
5	Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization. Energy and Environmental Materials, 2020, 3, 398-404.	12.8	42
6	Tunable electrochromic behavior of titanium-based MXenes. Nanoscale, 2020, 12, 14204-14212.	5.6	42
7	Enhancement of Ti ₃ C ₂ MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 5079-5086.	3.1	46
8	Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti ₃ C ₂ T _x MXene. Chemical Communications, 2020, 56, 6090-6093.	4.1	76
9	Energy Storage Data Reporting in Perspectiveâ€"Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials, 2019, 9, 1902007.	19.5	793
10	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie, 2019, 131, 18013-18019.	2.0	38
11	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie - International Edition, 2019, 58, 17849-17855.	13.8	117
12	Onâ€Chip MXene Microsupercapacitors for ACâ€Line Filtering Applications. Advanced Energy Materials, 2019, 9, 1901061.	19.5	113
13	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	18.0	136
14	High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chemistry of Materials, 2019, 31, 3324-3332.	6.7	296
15	Direct Writing of Additiveâ€Free MXeneâ€inâ€Water Ink for Electronics and Energy Storage. Advanced Materials Technologies, 2019, 4, 1800256.	5.8	112
16	Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24, 81-102.	11.9	138
17	Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy, 2019, 56, 151-159.	16.0	67
18	All Pseudocapacitive MXeneâ€RuO ₂ Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1703043.	19.5	757

#	Article	IF	CITATIONS
19	Asymmetric Flexible MXeneâ€Reduced Graphene Oxide Microâ€Supercapacitor. Advanced Electronic Materials, 2018, 4, 1700339.	5.1	324
20	Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. Small, 2018, 14, e1802864.	10.0	97
21	Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries. ACS Omega, 2018, 3, 12489-12494.	3.5	77
22	Bistacked Titanium Carbide (MXene) Anodes for Hybrid Sodium-Ion Capacitors. ACS Energy Letters, 2018, 3, 2094-2100.	17.4	145
23	Highly Doped 3D Graphene Naâ€lon Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient. Advanced Energy Materials, 2018, 8, 1800353.	19.5	83
24	Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20422-20427.	10.3	48
25	Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cutâ€andâ€Transfer Strategy. Advanced Energy Materials, 2017, 7, 1601257.	19.5	75
26	Micro-Pseudocapacitors with Electroactive Polymer Electrodes: Toward AC-Line Filtering Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12748-12755.	8.0	52
27	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372.	19.5	368
28	All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy and Environmental Science, 2016, 9, 2847-2854.	30.8	551
29	Highly Efficient Laser Scribed Graphene Electrodes for Onâ€Chip Electrochemical Sensing Applications. Advanced Electronic Materials, 2016, 2, 1600185.	5.1	202
30	Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films. Journal of Materials Chemistry C, 2016, 4, 215-221.	5 . 5	65
31	Marker Pen Lithography for Flexible and Curvilinear Onâ€Chip Energy Storage. Advanced Functional Materials, 2015, 25, 4976-4984.	14.9	50
32	Flexible Lithography: Marker Pen Lithography for Flexible and Curvilinear On-Chip Energy Storage (Adv. Funct. Mater. 31/2015). Advanced Functional Materials, 2015, 25, 5076-5076.	14.9	1
33	A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. Journal of Materials Chemistry C, 2015, 3, 2366-2370.	5. 5	45
34	All conducting polymer electrodes for asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7368-7374.	10.3	112
35	A general strategy for the fabrication of high performance microsupercapacitors. Nano Energy, 2015, 16, 1-9.	16.0	72
36	Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chemical Communications, 2015, 51, 10494-10497.	4.1	78

3

#	Article	IF	Citations
37	Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy, 2015, 13, 500-508.	16.0	214
38	Microfabricated Pseudocapacitors Using Ni(OH) ₂ Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density. Advanced Energy Materials, 2015, 5, 1401303.	19.5	84
39	Interaction and dynamics of ambient water adlayers on graphite probed using AFM voltage nanolithography and electrostatic force microscopy. Nanotechnology, 2014, 25, 155304.	2.6	3
40	A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper. Journal of Materials Chemistry A, 2014, 2, 17058-17065.	10.3	48
41	Nanocarbon-Scanning Probe Microscopy Synergy: Fundamental Aspects to Nanoscale Devices. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6147-6163.	8.0	29
42	Solution processed sun baked electrode material for flexible supercapacitors. RSC Advances, 2014, 4, 20281-20289.	3.6	11
43	Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation. Carbon, 2014, 78, 384-391.	10.3	51
44	Few layer graphene to graphitic films: infrared photoconductive versus bolometric response. Nanoscale, 2013, 5, 381-389.	5.6	37
45	Field effect transistors and RC filters from pencil-trace on paper. Physical Chemistry Chemical Physics, 2013, 15, 8367.	2.8	81
46	Pencil-on-paper: electronic devices. Lab on A Chip, 2013, 13, 2866.	6.0	181
47	Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms. AIP Advances, 2013, 3, 092108.	1.3	2
48	Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns. Nanotechnology, 2012, 23, 425301.	2.6	14
49	Field-Effect Transistors Based on Thermally Treated Electron Beam-Induced Carbonaceous Patterns. ACS Applied Materials & Diterfaces, 2012, 4, 1030-1036.	8.0	10
50	Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology, 2011, 22, 245302.	2.6	28
51	CNT Manipulation: Inserting a Carbonaceous Dielectric Layer Beneath Using Electron Beam Induced Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 1025-1029.	0.9	4
52	Ultrafast Direct Ablative Patterning of HOPG by Single Laser Pulses to Produce Graphene Ribbons. Advanced Functional Materials, 2011, 21, 3836-3842.	14.9	15
53	ELECTRON BEAM INDUCED CARBONACEOUS DEPOSITION AS A LOCAL DIELECTRIC FOR CNT CIRCUITS. International Journal of Nanoscience, 2011, 10, 935-941.	0.7	0
54	Electrocondensation and evaporation of attoliter water droplets: Direct visualization using atomic force microscopy. Nano Research, 2010, 3, 307-316.	10.4	12