Narendra Kurra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833972/publications.pdf

Version: 2024-02-01

54 papers 6,178 citations

94433 37 h-index 52 g-index

54 all docs 54 docs citations

54 times ranked

7296 citing authors

#	Article	IF	CITATIONS
1	Energy Storage Data Reporting in Perspectiveâ€"Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Advanced Energy Materials, 2019, 9, 1902007.	19.5	793
2	All Pseudocapacitive MXeneâ€RuO ₂ Asymmetric Supercapacitors. Advanced Energy Materials, 2018, 8, 1703043.	19.5	757
3	All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy and Environmental Science, 2016, 9, 2847-2854.	30.8	551
4	MXeneâ€onâ€Paper Coplanar Microsupercapacitors. Advanced Energy Materials, 2016, 6, 1601372.	19.5	368
5	Asymmetric Flexible MXeneâ€Reduced Graphene Oxide Microâ€Supercapacitor. Advanced Electronic Materials, 2018, 4, 1700339.	5.1	324
6	High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis. Chemistry of Materials, 2019, 31, 3324-3332.	6.7	296
7	Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy, 2015, 13, 500-508.	16.0	214
8	Highly Efficient Laser Scribed Graphene Electrodes for Onâ€Chip Electrochemical Sensing Applications. Advanced Electronic Materials, 2016, 2, 1600185.	5.1	202
9	Pencil-on-paper: electronic devices. Lab on A Chip, 2013, 13, 2866.	6.0	181
10	Bistacked Titanium Carbide (MXene) Anodes for Hybrid Sodium-Ion Capacitors. ACS Energy Letters, 2018, 3, 2094-2100.	17.4	145
11	Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24, 81-102.	11.9	138
12	MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Materials, 2019, 20, 455-461.	18.0	136
13	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie - International Edition, 2019, 58, 17849-17855.	13.8	117
14	Onâ€Chip MXene Microsupercapacitors for ACâ€Line Filtering Applications. Advanced Energy Materials, 2019, 9, 1901061.	19.5	113
15	All conducting polymer electrodes for asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2015, 3, 7368-7374.	10.3	112
16	Direct Writing of Additiveâ€Free MXeneâ€inâ€Water Ink for Electronics and Energy Storage. Advanced Materials Technologies, 2019, 4, 1800256.	5.8	112
17	Automated Scalpel Patterning of Solution Processed Thin Films for Fabrication of Transparent MXene Microsupercapacitors. Small, 2018, 14, e1802864.	10.0	97
18	Microfabricated Pseudocapacitors Using Ni(OH) ₂ Electrodes Exhibit Remarkable Volumetric Capacitance and Energy Density. Advanced Energy Materials, 2015, 5, 1401303.	19.5	84

#	Article	IF	CITATIONS
19	Highly Doped 3D Graphene Naâ€ion Battery Anode by Laser Scribing Polyimide Films in Nitrogen Ambient. Advanced Energy Materials, 2018, 8, 1800353.	19.5	83
20	Field effect transistors and RC filters from pencil-trace on paper. Physical Chemistry Chemical Physics, 2013, 15, 8367.	2.8	81
21	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	14.6	81
22	Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage. Chemical Communications, 2015, 51, 10494-10497.	4.1	78
23	Titanium Carbide (MXene) as a Current Collector for Lithium-Ion Batteries. ACS Omega, 2018, 3, 12489-12494.	3.5	77
24	Role of acid mixtures etching on the surface chemistry and sodium ion storage in Ti ₃ C ₂ T _x MXene. Chemical Communications, 2020, 56, 6090-6093.	4.1	76
25	Hybrid Microsupercapacitors with Vertically Scaled 3D Current Collectors Fabricated using a Simple Cutâ€andâ€√ransfer Strategy. Advanced Energy Materials, 2017, 7, 1601257.	19.5	7 5
26	A general strategy for the fabrication of high performance microsupercapacitors. Nano Energy, 2015, 16, 1-9.	16.0	72
27	Bipolar carbide-carbon high voltage aqueous lithium-ion capacitors. Nano Energy, 2019, 56, 151-159.	16.0	67
28	Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films. Journal of Materials Chemistry C, 2016, 4, 215-221.	5.5	65
29	Micro-Pseudocapacitors with Electroactive Polymer Electrodes: Toward AC-Line Filtering Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12748-12755.	8.0	52
30	Low cost, rapid synthesis of graphene on Ni: An efficient barrier for corrosion and thermal oxidation. Carbon, 2014, 78, 384-391.	10.3	51
31	Marker Pen Lithography for Flexible and Curvilinear Onâ€Chip Energy Storage. Advanced Functional Materials, 2015, 25, 4976-4984.	14.9	50
32	A conducting polymer nucleation scheme for efficient solid-state supercapacitors on paper. Journal of Materials Chemistry A, 2014, 2, 17058-17065.	10.3	48
33	Monolithic laser scribed graphene scaffolds with atomic layer deposited platinum for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2017, 5, 20422-20427.	10.3	48
34	Enhancement of Ti ₃ C ₂ MXene Pseudocapacitance after Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 5079-5086.	3.1	46
35	A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices. Journal of Materials Chemistry C, 2015, 3, 2366-2370.	5.5	45
36	Mapping (Pseudo)Capacitive Charge Storage Dynamics in Titanium Carbide MXene Electrodes in Aqueous Electrolytes Using 3D Bode Analysis. Energy Storage Materials, 2021, 39, 347-353.	18.0	44

#	Article	IF	CITATIONS
37	Rational Design of Titanium Carbide MXene Electrode Architectures for Hybrid Capacitive Deionization. Energy and Environmental Materials, 2020, 3, 398-404.	12.8	42
38	Tunable electrochromic behavior of titanium-based MXenes. Nanoscale, 2020, 12, 14204-14212.	5.6	42
39	Tuning the Electrochemical Performance of Titanium Carbide MXene by Controllable In Situ Anodic Oxidation. Angewandte Chemie, 2019, 131, 18013-18019.	2.0	38
40	Few layer graphene to graphitic films: infrared photoconductive versus bolometric response. Nanoscale, 2013, 5, 381-389.	5.6	37
41	Nanocarbon-Scanning Probe Microscopy Synergy: Fundamental Aspects to Nanoscale Devices. ACS Applied Materials & Samp; Interfaces, 2014, 6, 6147-6163.	8.0	29
42	Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography. Nanotechnology, 2011, 22, 245302.	2.6	28
43	Ultrafast Direct Ablative Patterning of HOPG by Single Laser Pulses to Produce Graphene Ribbons. Advanced Functional Materials, 2011, 21, 3836-3842.	14.9	15
44	Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns. Nanotechnology, 2012, 23, 425301.	2.6	14
45	Electrocondensation and evaporation of attoliter water droplets: Direct visualization using atomic force microscopy. Nano Research, 2010, 3, 307-316.	10.4	12
46	Solution processed sun baked electrode material for flexible supercapacitors. RSC Advances, 2014, 4, 20281-20289.	3.6	11
47	Field-Effect Transistors Based on Thermally Treated Electron Beam-Induced Carbonaceous Patterns. ACS Applied Materials & Diterfaces, 2012, 4, 1030-1036.	8.0	10
48	Supercapacitors. , 2022, , 383-417.		7
49	CNT Manipulation: Inserting a Carbonaceous Dielectric Layer Beneath Using Electron Beam Induced Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 1025-1029.	0.9	4
50	Layer-by-Layer Assembly-Based Heterointerfaces for Modulating the Electronic Properties of Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Applied Materials & amp; Interfaces, 2021, 13, 59104-59114.	8.0	4
51	Interaction and dynamics of ambient water adlayers on graphite probed using AFM voltage nanolithography and electrostatic force microscopy. Nanotechnology, 2014, 25, 155304.	2.6	3
52	Tunable atomic force microscopy bias lithography on electron beam induced carbonaceous platforms. AIP Advances, 2013, 3, 092108.	1.3	2
53	Flexible Lithography: Marker Pen Lithography for Flexible and Curvilinear On-Chip Energy Storage (Adv. Funct. Mater. 31/2015). Advanced Functional Materials, 2015, 25, 5076-5076.	14.9	1
54	ELECTRON BEAM INDUCED CARBONACEOUS DEPOSITION AS A LOCAL DIELECTRIC FOR CNT CIRCUITS. International Journal of Nanoscience, 2011, 10, 935-941.	0.7	0