List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833732/publications.pdf Version: 2024-02-01

Ιςμίρο Νλκλνο

#	Article	IF	CITATIONS
1	A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Neuro-Oncology, 2022, 24, 39-51.	1.2	22
2	PRMT6 methylation of RCC1 regulates mitosis, tumorigenicity, and radiation response of glioblastoma stem cells. Molecular Cell, 2021, 81, 1276-1291.e9.	9.7	54
3	Targeting glioma-initiating cells via the tyrosine metabolic pathway. Journal of Neurosurgery, 2021, 134, 721-732.	1.6	23
4	N-cadherin upregulation mediates adaptive radioresistance in glioblastoma. Journal of Clinical Investigation, 2021, 131, .	8.2	43
5	Chloride intracellular channel protein 2 is secreted and inhibits MMP14 activity, while preventing tumor cell invasion and metastasis. Neoplasia, 2021, 23, 754-765.	5.3	12
6	Modulation of Nogo receptor 1 expression orchestrates myelin-associated infiltration of glioblastoma. Brain, 2021, 144, 636-654.	7.6	16
7	Olfactory receptor 5B21 drives breast cancer metastasis. IScience, 2021, 24, 103519.	4.1	4
8	CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells. Neuro-Oncology Advances, 2021, 3, vi3-vi3.	0.7	0
9	ICOSLG-mediated regulatory T cell expansion and IL-10 production promote progression of glioblastoma. Neuro-Oncology, 2020, 22, 333-344.	1.2	40
10	An Update on Neurofibromatosis Type 1-Associated Gliomas. Cancers, 2020, 12, 114.	3.7	50
11	ΔNp73/ETS2 complex drives glioblastoma pathogenesis— targeting downstream mediators by rebastinib prolongs survival in preclinical models of glioblastoma. Neuro-Oncology, 2020, 22, 345-356.	1.2	20
12	Glioma-initiating cells at tumor edge gain signals from tumor core cells to promote their malignancy. Nature Communications, 2020, 11, 4660.	12.8	80
13	Extracellular Vesicles Induce Mesenchymal Transition and Therapeutic Resistance in Glioblastomas through NFâ€îºB/STAT3 Signaling. Advanced Biology, 2020, 4, 1900312.	3.0	15
14	LY6K promotes glioblastoma tumorigenicity via CAV-1–mediated ERK1/2 signaling enhancement. Neuro-Oncology, 2020, 22, 1315-1326.	1.2	17
15	Obtusaquinone: A Cysteine-Modifying Compound That Targets Keap1 for Degradation. ACS Chemical Biology, 2020, 15, 1445-1454.	3.4	18
16	Imidazo[1,2- <i>a</i>]pyridine Derivatives as Aldehyde Dehydrogenase Inhibitors: Novel Chemotypes to Target Glioblastoma Stem Cells. Journal of Medicinal Chemistry, 2020, 63, 4603-4616.	6.4	38
17	Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death and Disease, 2020, 11, 253.	6.3	67
18	Identification of ALDH1A3 as a Viable Therapeutic Target in Breast Cancer Metastasis–Initiating Cells. Molecular Cancer Therapeutics, 2020, 19, 1134-1147.	4.1	17

#	Article	IF	CITATIONS
19	Combined PI3Kα-mTOR Targeting of Glioma Stem Cells. Scientific Reports, 2020, 10, 21873.	3.3	17
20	Tumor edge-to-core transition promotes malignancy in primary-to-recurrent glioblastoma progression in a PLAGL1/CD109-mediated mechanism. Neuro-Oncology Advances, 2020, 2, vdaa163.	0.7	8
21	Perhexiline Demonstrates FYN-mediated Antitumor Activity in Glioblastoma. Molecular Cancer Therapeutics, 2020, 19, 1415-1422.	4.1	16
22	Molecular and cellular intratumoral heterogeneity in primary glioblastoma: clinical and translational implications. Journal of Neurosurgery, 2020, 133, 655-663.	1.6	44
23	Intratumoral spatial heterogeneity of BTK kinomic activity dictates distinct therapeutic response within a single glioblastoma tumor. Journal of Neurosurgery, 2020, 133, 1683-1694.	1.6	13
24	IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nature Cell Biology, 2019, 21, 1003-1014.	10.3	107
25	A Precise, Controllable in vitro Model for Diffuse Axonal Injury Through Uniaxial Stretch Injury. Frontiers in Neuroscience, 2019, 13, 1063.	2.8	21
26	SRSF3-Regulated RNA Alternative Splicing Promotes Glioblastoma Tumorigenicity by Affecting Multiple Cellular Processes. Cancer Research, 2019, 79, 5288-5301.	0.9	63
27	Current Approaches and Challenges in the Molecular Therapeutic Targeting of Glioblastoma. World Neurosurgery, 2019, 129, 90-100.	1.3	52
28	Sustained NF-κB-STAT3 signaling promotes resistance to Smac mimetics in Glioma stem-like cells but creates a vulnerability to EZH2 inhibition. Cell Death Discovery, 2019, 5, 72.	4.7	18
29	Phenotypic Plasticity of Invasive Edge Glioma Stem-like Cells in Response to Ionizing Radiation. Cell Reports, 2019, 26, 1893-1905.e7.	6.4	161
30	Integrative cross-platform analyses identify enhanced heterotrophy as a metabolic hallmark in glioblastoma. Neuro-Oncology, 2019, 21, 337-347.	1.2	25
31	<i>MIR93</i> (<i>microRNA -93</i>) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy, 2019, 15, 1100-1111.	9.1	100
32	Statins affect human glioblastoma and other cancers through TGF-β inhibition. Oncotarget, 2019, 10, 1716-1728.	1.8	30
33	Abstract 3432: Novel roles of LY6K in glioblastoma tumorigenesis. , 2019, , .		0
34	Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Science Advances, 2018, 4, eaar2766.	10.3	416
35	Toxicity and Efficacy of a Novel GADD34-expressing Oncolytic HSV-1 for the Treatment of Experimental Glioblastoma. Clinical Cancer Research, 2018, 24, 2574-2584.	7.0	40
36	Activation of the Receptor Tyrosine Kinase AXL Regulates the Immune Microenvironment in Glioblastoma. Cancer Research, 2018, 78, 3002-3013.	0.9	122

#	Article	IF	CITATIONS
37	Targeting the mesenchymal subtype in glioblastoma and other cancers via inhibition of diacylglycerol kinase alpha. Neuro-Oncology, 2018, 20, 192-202.	1.2	52
38	Differential Response of Glioma Stem Cells to Arsenic Trioxide Therapy Is Regulated by MNK1 and mRNA Translation. Molecular Cancer Research, 2018, 16, 32-46.	3.4	29
39	Divergent evolution of temozolomide resistance in glioblastoma stem cells is reflected in extracellular vesicles and coupled with radiosensitization. Neuro-Oncology, 2018, 20, 236-248.	1.2	103
40	miRNA-mediated TUSC3 deficiency enhances UPR and ERAD to promote metastatic potential of NSCLC. Nature Communications, 2018, 9, 5110.	12.8	38
41	Combined c-Met/Trk Inhibition Overcomes Resistance to CDK4/6 Inhibitors in Glioblastoma. Cancer Research, 2018, 78, 4360-4369.	0.9	46
42	Genome-wide methylomic and transcriptomic analyses identify subtype-specific epigenetic signatures commonly dysregulated in glioma stem cells and glioblastoma. Epigenetics, 2018, 13, 432-448.	2.7	29
43	5-Aminolevulinic acid-mediated photodynamic therapy can target human glioma stem-like cells refractory to antineoplastic agents. Photodiagnosis and Photodynamic Therapy, 2018, 24, 58-68.	2.6	27
44	A PDGFRα-driven mouse model of glioblastoma reveals a stathmin1-mediated mechanism of sensitivity to vinblastine. Nature Communications, 2018, 9, 3116.	12.8	30
45	Apoptotic Cell-Derived Extracellular Vesicles Promote Malignancy of Glioblastoma Via Intercellular Transfer of Splicing Factors. Cancer Cell, 2018, 34, 119-135.e10.	16.8	222
46	AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nature Cell Biology, 2018, 20, 823-835.	10.3	106
47	Abstract 4839: Targeting glioma stem cells by pharmacologic stabilization of G-quadruplexes. Cancer Research, 2018, 78, 4839-4839.	0.9	1
48	A small molecule regulator of tissue transglutaminase conformation inhibits the malignant phenotype of cancer cells. Oncotarget, 2018, 9, 34379-34397.	1.8	11
49	Abstract 1122: MST4 phosphorylation of ATG4B regulates autophagic activity, tumorigenicity, and radio resistance in glioblastoma. , 2018, , .		0
50	Dissecting inherent intratumor heterogeneity in patient-derived glioblastoma culture models. Neuro-Oncology, 2017, 19, now253.	1.2	35
51	Targeting glioma stem cells in vivo by a G-quadruplex-stabilizing synthetic macrocyclic hexaoxazole. Scientific Reports, 2017, 7, 3605.	3.3	40
52	MicroRNA Signatures and Molecular Subtypes of Glioblastoma: The Role of Extracellular Transfer. Stem Cell Reports, 2017, 8, 1497-1505.	4.8	58
53	MicroRNA-Mediated Dynamic Bidirectional Shift between the Subclasses of Glioblastoma Stem-like Cells. Cell Reports, 2017, 19, 2026-2032.	6.4	33
54	SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, 2017, 135, 487-496.	2.9	29

Ιςμικό Νακανό

#	Article	IF	CITATIONS
55	The Fc Domain of Immunoglobulin Is Sufficient to Bridge NK Cells with Virally Infected Cells. Immunity, 2017, 47, 159-170.e10.	14.3	27
56	Transglutaminase 2 Inhibition Reverses Mesenchymal Transdifferentiation of Glioma Stem Cells by Regulating C/EBPβ Signaling. Cancer Research, 2017, 77, 4973-4984.	0.9	68
57	Combined CDK4/6 and mTOR Inhibition Is Synergistic against Glioblastoma via Multiple Mechanisms. Clinical Cancer Research, 2017, 23, 6958-6968.	7.0	74
58	MST4 Phosphorylation of ATG4B Regulates Autophagic Activity, Tumorigenicity, and Radioresistance in Glioblastoma. Cancer Cell, 2017, 32, 840-855.e8.	16.8	188
59	Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells. Stem Cell Reports, 2017, 9, 1948-1960.	4.8	20
60	GPR56/ADGRG1 Inhibits Mesenchymal Differentiation and Radioresistance in Glioblastoma. Cell Reports, 2017, 21, 2183-2197.	6.4	56
61	The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells. Oncotarget, 2017, 8, 22325-22343.	1.8	36
62	Targeting NEK2 attenuates glioblastoma growth and radioresistance by destabilizing histone methyltransferase EZH2. Journal of Clinical Investigation, 2017, 127, 3075-3089.	8.2	86
63	CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget, 2017, 8, 55319-55331.	1.8	39
64	Abstract 937: Plasticity in heterogenous cancer stem cells promotes glioblastoma radioresistance. , 2017, , .		0
65	Abstract 869: Mesenchymal identity of breast cancer promotes brain metastases and therapeutic resistance through MLK4/NFkB signaling Pathway. , 2017, , .		0
66	Abstract 4332: Interactome between vascular endothelial cells and Proneural glioma stem cells protects seeds for GBM recurrence from radiation therapy. , 2017, , .		0
67	Abstract 5433: \hat{l}^2 -Tubulin inhibitors reduce GLUT1 membrane trafficking to attenuate tumorigenesis in glioblastoma subtypes. , 2017, , .		0
68	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	3.2	189
69	MNK Inhibition Disrupts Mesenchymal Glioma Stem Cells and Prolongs Survival in a Mouse Model of Glioblastoma. Molecular Cancer Research, 2016, 14, 984-993.	3.4	38
70	Extracellular Vesicles from High-Grade Glioma Exchange Diverse Pro-oncogenic Signals That Maintain Intratumoral Heterogeneity. Cancer Research, 2016, 76, 2876-2881.	0.9	85
71	FOXD1–ALDH1A3 Signaling Is a Determinant for the Self-Renewal and Tumorigenicity of Mesenchymal Glioma Stem Cells. Cancer Research, 2016, 76, 7219-7230.	0.9	120
72	Feedback Loop Regulation of SCAP/SREBP-1 by miR-29 Modulates EGFR Signaling-Driven Glioblastoma Growth. Cell Reports, 2016, 16, 1527-1535.	6.4	66

#	Article	IF	CITATIONS
73	On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance. Nano Letters, 2016, 16, 5326-5332.	9.1	44
74	A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nature Communications, 2016, 7, 12885.	12.8	72
75	The Long Non-coding RNA HIF1A-AS2 Facilitates the Maintenance of Mesenchymal Glioblastoma Stem-like Cells in Hypoxic Niches. Cell Reports, 2016, 15, 2500-2509.	6.4	156
76	Inhibition of SOAT1 Suppresses Glioblastoma Growth via Blocking SREBP-1–Mediated Lipogenesis. Clinical Cancer Research, 2016, 22, 5337-5348.	7.0	210
77	Senescence from glioma stem cell differentiation promotes tumor growth. Biochemical and Biophysical Research Communications, 2016, 470, 275-281.	2.1	24
78	Serine/Threonine Kinase MLK4 Determines Mesenchymal Identity in Glioma Stem Cells in an NF-κB-dependent Manner. Cancer Cell, 2016, 29, 201-213.	16.8	147
79	G-quadruplex ligand-induced DNA damage response coupled with telomere dysfunction and replication stress in glioma stem cells. Biochemical and Biophysical Research Communications, 2016, 471, 75-81.	2.1	30
80	Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling. Neuro-Oncology, 2016, 18, 656-666.	1.2	37
81	Targeting of glioblastoma cell lines and glioma stem cells by combined PIM kinase and PI3K-p110α inhibition. Oncotarget, 2016, 7, 33192-33201.	1.8	26
82	Abstract 2518: Crosstalk between stem and non-stem cells in glioblastoma promotes radioresistance in a CD109-dependent manner. , 2016, , .		0
83	Abstract 695: SHP-2-upregulated ZEB1 is important for PDGFRÃ _i -driven glioma epithelial-mesenchymal transition and invasion in mice and humans. , 2016, , .		0
84	Comparison of Pituitary Adenomas in Elderly and Younger Adults: Clinical Characteristics, Surgical Outcomes, and Prognosis. Journal of the American Geriatrics Society, 2015, 63, 1924-1930.	2.6	36
85	Strong therapeutic potential of γ-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells. Journal of Neuro-Oncology, 2015, 121, 239-250.	2.9	20
86	Kinome-wide shRNA Screen Identifies the Receptor Tyrosine Kinase AXL as a Key Regulator for Mesenchymal Glioblastoma Stem-like Cells. Stem Cell Reports, 2015, 4, 899-913.	4.8	47
87	EZH2 Protects Glioma Stem Cells from Radiation-Induced Cell Death in a MELK/FOXM1-Dependent Manner. Stem Cell Reports, 2015, 4, 226-238.	4.8	159
88	Extracellular vesicles in the biology of brain tumour stem cells – Implications for inter-cellular communication, therapy and biomarker development. Seminars in Cell and Developmental Biology, 2015, 40, 17-26.	5.0	86
89	Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells. Genomics Data, 2015, 5, 333-336.	1.3	29
90	Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4055-64.	7.1	60

#	Article	IF	CITATIONS
91	Pigment Epithelium-Derived Factor (PEDF) Expression Induced by EGFRvIII Promotes Self-renewal and Tumor Progression of Glioma Stem Cells. PLoS Biology, 2015, 13, e1002152.	5.6	56
92	CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Scientific Reports, 2015, 5, 11483.	3.3	270
93	miRNA contents of cerebrospinal fluid extracellular vesicles in glioblastoma patients. Journal of Neuro-Oncology, 2015, 123, 205-216.	2.9	128
94	MELK—a conserved kinase: functions, signaling, cancer, and controversy. Clinical and Translational Medicine, 2015, 4, 11.	4.0	99
95	Ras-mediated modulation of pyruvate dehydrogenase activity regulates mitochondrial reserve capacity and contributes to glioblastoma tumorigenesis. Neuro-Oncology, 2015, 17, 1220-1230.	1.2	33
96	Posttraumatic cerebral infarction in severe traumatic brain injury: characteristics, risk factors and potential mechanisms. Acta Neurochirurgica, 2015, 157, 1697-1704.	1.7	25
97	Stem cell signature in glioblastoma: therapeutic development for a moving target. Journal of Neurosurgery, 2015, 122, 324-330.	1.6	81
98	SIRT1 is required for oncogenic transformation of neural stem cells and for the survival of "cancer cells with neural stemness―in a p53-dependent manner. Neuro-Oncology, 2015, 17, 95-106.	1.2	40
99	Histone deacetylase 6 inhibition enhances oncolytic viral replication in glioma. Journal of Clinical Investigation, 2015, 125, 4269-4280.	8.2	57
100	RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget, 2015, 6, 14766-14776.	1.8	78
101	Abstract 2321: A hematopoietic stem cell factor drives brain tumor initiating cell genesis through Notch signaling. , 2015, , .		0
102	Abstract B26: MAPK-interacting kinase inhibition sensitizes glioblastoma and glioma stem cells to arsenic trioxide. , 2015, , .		0
103	Multi-Kinase Inhibitor C1 Triggers Mitotic Catastrophe of Glioma Stem Cells Mainly through MELK Kinase Inhibition. PLoS ONE, 2014, 9, e92546.	2.5	34
104	Transcription factors as master regulator for cancer stemness: remove milk from fox?. Expert Review of Anticancer Therapy, 2014, 14, 873-875.	2.4	13
105	Engulfing losers by winners in cancer: do cancer stem cells catch eat-me signals from noncancer stem cells?. Future Oncology, 2014, 10, 1335-1338.	2.4	1
106	Maternal Embryonic Leucine Zipper Kinase: Key Kinase for Stem Cell Phenotype in Glioma and Other Cancers. Molecular Cancer Therapeutics, 2014, 13, 1393-1398.	4.1	55
107	ET-27 * REPLICATION AND SPREAD OF ONCOLYTIC HERPES VIRUS IN GLIOMA STEM CELLS CAN BE ENHANCED BY SPECIFIC INHIBITION OF HISTONE DEACETYLASE 6. Neuro-Oncology, 2014, 16, v85-v85.	1.2	0
108	Ethics of iPSC-Based Clinical Research for Age-Related Macular Degeneration: Patient-Centered Risk-Benefit Analysis. Stem Cell Reviews and Reports, 2014, 10, 743-752.	5.6	18

#	Article	IF	CITATIONS
109	Tumoral RANKL activates astrocytes that promote glioma cell invasion through cytokine signaling. Cancer Letters, 2014, 353, 194-200.	7.2	58
110	Therapeutic potential of targeting glucose metabolism in glioma stem cells. Expert Opinion on Therapeutic Targets, 2014, 18, 1233-1236.	3.4	23
111	Proneural–mesenchymal transformation of glioma stem cells: do therapies cause evolution of target in glioblastoma?. Future Oncology, 2014, 10, 1527-1530.	2.4	8
112	Crosstalk between Glioma-Initiating Cells and Endothelial Cells Drives Tumor Progression. Cancer Research, 2014, 74, 4482-4492.	0.9	77
113	The AMPK Inhibitor Compound C Is a Potent AMPK-Independent Antiglioma Agent. Molecular Cancer Therapeutics, 2014, 13, 596-605.	4.1	229
114	Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro-Oncology, 2014, 16, 1354-1364.	1.2	51
115	Detoxification of oxidative stress in glioma stem cells: Mechanism, clinical relevance, and therapeutic development. Journal of Neuroscience Research, 2014, 92, 1419-1424.	2.9	43
116	Extracellular Vesicles Modulate the Glioblastoma Microenvironment via a Tumor Suppression Signaling Network Directed by miR-1. Cancer Research, 2014, 74, 738-750.	0.9	197
117	High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor. Cell Reports, 2014, 6, 117-129.	6.4	76
118	Intercellular Cooperation and Competition in Brain Cancers: Lessons From <i>Drosophila</i> and Human Studies. Stem Cells Translational Medicine, 2014, 3, 1262-1268.	3.3	29
119	AI-03 * TARGETING ANGIOGENESIS WITHOUT INCREASING THE STROMAL CELL RESPONSE OR INVASION USING ABT-898, A THROMBOSPONDIN TYPE 1 REPEAT PEPTIDE. Neuro-Oncology, 2014, 16, v1-v1.	1.2	0
120	Abstract 3039: The MELK/FOXM1 axis is a master regulator of proneural to mesenchymal transition (PMT) in glioma stem cells by controlling EZH2 transcriptional activity. , 2014, , .		1
121	EGFR phosphorylation of DCBLD2 recruits TRAF6 and stimulates AKT-promoted tumorigenesis. Journal of Clinical Investigation, 2014, 124, 3741-3756.	8.2	82
122	Genomic Analyses Reveal Broad Impact of miR-137 on Genes Associated with Malignant Transformation and Neuronal Differentiation in Glioblastoma Cells. PLoS ONE, 2014, 9, e85591.	2.5	38
123	Targeted Delivery of Tumor Suppressor microRNA-1 by Transferrin- Conjugated Lipopolyplex Nanoparticles to Patient-Derived Glioblastoma Stem Cells. Current Pharmaceutical Biotechnology, 2014, 15, 839-846.	1.6	62
124	Abstract 1941: GSK3 signaling is critical to glioma stem cell growth and survival. , 2014, , .		0
125	Abstract 3877: Evolution of cancer stem cells in glioma to promote their therapy-resistant phenotype. , 2014, , .		0
126	Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nature Neuroscience, 2013, 16, 1373-1382.	14.8	408

#	Article	IF	CITATIONS
127	Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma. Cancer Cell, 2013, 24, 331-346.	16.8	856
128	Impairment of Glioma Stem Cell Survival and Growth by a Novel Inhibitor for Survivin–Ran Protein Complex. Clinical Cancer Research, 2013, 19, 631-642.	7.0	80
129	Phosphorylation of EZH2 Activates STAT3 Signaling via STAT3 Methylation and Promotes Tumorigenicity of Glioblastoma Stem-like Cells. Cancer Cell, 2013, 23, 839-852.	16.8	665
130	MELK-Dependent FOXM1 Phosphorylation is Essential for Proliferation of Glioma Stem Cells. Stem Cells, 2013, 31, 1051-1063.	3.2	166
131	Blockade of EGFR signaling promotes glioma stem-like cell invasiveness by abolishing ID3-mediated inhibition of p27KIP1 and MMP3 expression. Cancer Letters, 2013, 328, 235-242.	7.2	32
132	A streamlined protocol for the use of the semi-sitting position in neurosurgery: A report on 48 consecutive procedures. Journal of Clinical Neuroscience, 2013, 20, 32-34.	1.5	51
133	miR-21 in the Extracellular Vesicles (EVs) of Cerebrospinal Fluid (CSF): A Platform for Glioblastoma Biomarker Development. PLoS ONE, 2013, 8, e78115.	2.5	270
134	MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells. Neuro-Oncology, 2013, 15, 1212-1224.	1.2	104
135	Tumor-Specific Activation of the C-JUN/MELK Pathway Regulates Glioma Stem Cell Growth in a p53-Dependent Manner. Stem Cells, 2013, 31, 870-881.	3.2	111
136	Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8644-8649.	7.1	523
137	Abstract 4904: Activation of aldehyde dehydrogenase is essential for growth of mesenchymal glioma stem cells , 2013, , .		0
138	Abstract 4912: MELK-dependent phosphorylation of FOXM1 is essential for mitotic progression of glioma stem cells , 2013, , .		0
139	Laminin alpha 2 enables glioblastoma stem cell growth. Annals of Neurology, 2012, 72, 766-778.	5.3	151
140	Fluorescence-Guided Brain Tumor Surgery. World Neurosurgery, 2012, 78, 559-564.	1.3	8
141	Therapeutic targeting of VEGF in the treatment of glioblastoma. Expert Opinion on Therapeutic Targets, 2012, 16, 973-984.	3.4	35
142	Hope and Challenges for Dendritic Cell–Based Vaccine Therapy for Glioblastoma. World Neurosurgery, 2012, 77, 633-635.	1.3	2
143	Telomestatin Impairs Glioma Stem Cell Survival and Growth through the Disruption of Telomeric G-Quadruplex and Inhibition of the Proto-oncogene, <i>c-Myb</i> . Clinical Cancer Research, 2012, 18, 1268-1280.	7.0	105
144	Glioma Stem Cells: Their Role in Chemoresistance. World Neurosurgery, 2012, 77, 237-240.	1.3	27

#	Article	IF	CITATIONS
145	Suppression of Peroxiredoxin 4 in Glioblastoma Cells Increases Apoptosis and Reduces Tumor Growth. PLoS ONE, 2012, 7, e42818.	2.5	42
146	Characteristics of Brain Tumor Stem Cells and the Rationale for Applying Tyrosine Kinase Inhibitors as Potential Targeting Agents. Recent Patents on Regenerative Medicine, 2012, 2, 197-207.	0.4	0
147	CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway. PLoS ONE, 2011, 6, e24217.	2.5	115
148	Method for Novel Anti-Cancer Drug Development using Tumor Explants of Surgical Specimens. Journal of Visualized Experiments, 2011, , .	0.3	6
149	Editorial: glioma subpopulations. Journal of Neurosurgery, 2011, 114, 648-650.	1.6	5
150	Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway. Neuro-Oncology, 2011, 13, 622-634.	1.2	63
151	A Molecular Screening Approach to Identify and Characterize Inhibitors of Glioblastoma Stem Cells. Molecular Cancer Therapeutics, 2011, 10, 1818-1828.	4.1	80
152	Abstract 3302: The effects of the g-quadruplex ligand telomestatin to human brain tumor stem cell survival and growth. , 2011, , .		0
153	Abstract 3299: Targeting therapy-resistant glioma cells with novel compounds that inhibit action of survivin. , 2011, , .		0
154	Abstract 4250: A novel thrombospondin-1 mimetic peptide, ABT-898, decreases angiogenesis in a mouse model of glioblastoma multiforme. , 2011, , .		0
155	Abstract 3298: Structure-based computer-aided drug design to discover novel small molecules that target brain tumor stem cells. , 2011, , .		0
156	Abstract LB-103: Signaling via CD44v6 is associated with the growth of CD44-expressing glioma stem-like cells. , 2011, , .		0
157	Relationship between the tautomeric structures of curcumin derivatives and their AÎ ² -binding activities in the context of therapies for Alzheimer's disease. Biomaterials, 2010, 31, 4179-4185.	11.4	133
158	Trifluoromethoxy-benzylated ligands improve amyloid detection in the brain using 19F magnetic resonance imaging. Neuroscience Research, 2009, 63, 76-81.	1.9	21
159	Methods for Analysis of Brain Tumor Stem Cell and Neural Stem Cell Self-Renewal. Methods in Molecular Biology, 2009, 568, 37-56.	0.9	30
160	Cancer Stem Cells in Pediatric Brain Tumors. Current Stem Cell Research and Therapy, 2009, 4, 298-305.	1.3	16
161	Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells. Journal of Neuroscience Research, 2008, 86, 48-60.	2.9	144
162	BMPing Off Glioma Stem Cells. Cancer Cell, 2008, 13, 3-4.	16.8	31

#	Article	IF	CITATIONS
163	Phosphoserine Phosphatase Is Expressed in the Neural Stem Cell Niche and Regulates Neural Stem and Progenitor Cell Proliferation. Stem Cells, 2007, 25, 1975-1984.	3.2	31
164	Phenotypic and functional heterogeneity of GFAP-expressing cells in vitro: Differential expression of LeX/CD15 by GFAP-expressing multipotent neural stem cells and non-neurogenic astrocytes. Glia, 2006, 53, 277-293.	4.9	109
165	Brain Tumor Stem Cells. Pediatric Research, 2006, 59, 54R-58R.	2.3	63
166	Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation. Journal of Cell Biology, 2005, 170, 413-427.	5.2	136
167	Developmental expression of glial fibrillary acidic protein mRNA in mouse forebrain germinal zones—implications for stem cell biology. Developmental Brain Research, 2004, 153, 121-125.	1.7	31
168	Patterns of Jagged1, Jagged2, Deltaâ€like 1 and Deltaâ€like 3 expression during late embryonic and postnatal brain development suggest multiple functional roles in progenitors and differentiated cells. Journal of Neuroscience Research, 2004, 75, 330-343.	2.9	83
169	Neural progenitor genes. Developmental Biology, 2003, 264, 309-322.	2.0	62
170	Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15178-15183.	7.1	1,686
171	Stem Cell-derived Neural Stem/Progenitor Cell Supporting Factor Is an Autocrine/Paracrine Survival Factor for Adult Neural Stem/Progenitor Cells. Journal of Biological Chemistry, 2003, 278, 35491-35500.	3.4	47
172	Choroid Plexus Papilloma in the Posterior Third Ventricle: Case Report. Neurosurgery, 1997, 40, 1279-1282.	1.1	41
173	Solitary metastatic breast carcinoma in a trigeminal nerve mimicking a trigeminal neurinoma. Journal of Neurosurgery. 1996. 85. 677-680.	1.6	8