## Maureen A Mcgargill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2833594/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pre-existing humoral immunity to human common cold coronaviruses negatively impacts the protective SARS-CoV-2 antibody response. Cell Host and Microbe, 2022, 30, 83-96.e4.                                                                      | 11.0 | 64        |
| 2  | Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell<br>Reports, 2022, 38, 110482.                                                                                                                  | 6.4  | 7         |
| 3  | SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8+ T cells. Nature<br>Immunology, 2022, 23, 781-790.                                                                                                           | 14.5 | 116       |
| 4  | Host Predictors of Broadly Cross-Reactive Antibodies Against Severe Acute Respiratory Syndrome<br>Coronavirus 2 (SARS-CoV-2) Variants of Concern Differ Between Infection and Vaccination. Clinical<br>Infectious Diseases, 2022, 75, e705-e714. | 5.8  | 10        |
| 5  | Cross-reactive Antibody Response to mRNA SARS-CoV-2 Vaccine After Recent COVID-19-Specific<br>Monoclonal Antibody Therapy. Open Forum Infectious Diseases, 2021, 8, ofab420.                                                                     | 0.9  | 12        |
| 6  | Proinflammatory cytokines promote TET2-mediated DNA demethylation during CD8 TÂcell effector<br>differentiation. Cell Reports, 2021, 37, 109796.                                                                                                 | 6.4  | 14        |
| 7  | An Assessment of Serological Assays for SARS-CoV-2 as Surrogates for Authentic Virus<br>Neutralization. Microbiology Spectrum, 2021, 9, e0105921.                                                                                                | 3.0  | 14        |
| 8  | Broadly Reactive Influenza Antibodies Are Not Limited by Germinal Center Competition with<br>High-Affinity Antibodies. MBio, 2020, 11, .                                                                                                         | 4.1  | 3         |
| 9  | Beta cell-specific CD8+ T cells maintain stem cell memory-associated epigenetic programs during type 1<br>diabetes. Nature Immunology, 2020, 21, 578-587.                                                                                        | 14.5 | 63        |
| 10 | Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is essential for effector function. PLoS Pathogens, 2020, 16, e1008957.                                                                        | 4.7  | 13        |
| 11 | Myc-induced nuclear antigen constrains a latent intestinal epithelial cell-intrinsic anthelmintic pathway. PLoS ONE, 2019, 14, e0211244.                                                                                                         | 2.5  | 5         |
| 12 | Potential killers exposed: tracking endogenous influenzaâ€specific CD8 <sup>+</sup> T cells.<br>Immunology and Cell Biology, 2018, 96, 1104-1119.                                                                                                | 2.3  | 12        |
| 13 | Extracellular Signal-Regulated Kinase Signaling in CD4-Expressing Cells Inhibits Osteochondromas.<br>Frontiers in Immunology, 2017, 8, 482.                                                                                                      | 4.8  | 10        |
| 14 | Drak2 is not required for tumor surveillance and suppression. International Immunology, 2015, 27, 161-166.                                                                                                                                       | 4.0  | 13        |
| 15 | Drak2 Does Not Regulate TGF-Î <sup>2</sup> Signaling in T Cells. PLoS ONE, 2015, 10, e0123650.                                                                                                                                                   | 2.5  | 9         |
| 16 | The kinase mTOR modulates the antibody response to provide cross-protective immunity to lethal infection with influenza virus. Nature Immunology, 2013, 14, 1266-1276.                                                                           | 14.5 | 169       |
| 17 | Signaling via the RIP2 Adaptor Protein in Central Nervous System-Infiltrating Dendritic Cells<br>Promotes Inflammation and Autoimmunity. Immunity, 2011, 34, 75-84.                                                                              | 14.3 | 116       |
| 18 | TLR2 and RIP2 Pathways Mediate Autophagy of Listeria monocytogenes via Extracellular<br>Signal-regulated Kinase (ERK) Activation. Journal of Biological Chemistry, 2011, 286, 42981-42991.                                                       | 3.4  | 119       |

| #  | Article                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Foxo Transcription Factors Control Regulatory T Cell Development and Function. Immunity, 2010, 33, 890-904.                                                           | 14.3 | 369       |
| 20 | Cutting Edge: Critical Role for PYCARD/ASC in the Development of Experimental Autoimmune<br>Encephalomyelitis. Journal of Immunology, 2010, 184, 4610-4614.           | 0.8  | 139       |
| 21 | Prevention of autoimmune disease by induction of tolerance to Toll-like receptor 7. Proceedings of the United States of America, 2009, 106, 2764-2769.                | 7.1  | 100       |
| 22 | Cutting Edge: Extracellular Signal-Related Kinase Is Not Required for Negative Selection of Developing<br>T Cells. Journal of Immunology, 2009, 183, 4838-4842.       | 0.8  | 35        |
| 23 | Drak2 Contributes to West Nile Virus Entry into the Brain and Lethal Encephalitis. Journal of Immunology, 2008, 181, 2084-2091.                                       | 0.8  | 58        |
| 24 | Drak2 Regulates the Survival of Activated T Cells and Is Required for Organ-Specific Autoimmune Disease. Journal of Immunology, 2008, 181, 7593-7605.                 | 0.8  | 31        |
| 25 | Drak2 is critical for the survival of autoreactive T cells. FASEB Journal, 2008, 22, 667.22.                                                                          | 0.5  | 0         |
| 26 | Active Ca2+/Calmodulin-Dependent Protein Kinase IIγB Impairs Positive Selection of T Cells by<br>Modulating TCR Signaling. Journal of Immunology, 2005, 175, 656-664. | 0.8  | 24        |
| 27 | A Deficiency in Drak2 Results in a T Cell Hypersensitivity and an Unexpected Resistance to Autoimmunity. Immunity, 2004, 21, 781-791.                                 | 14.3 | 67        |
| 28 | A Spontaneous CD8 T Cell-Dependent Autoimmune Disease to an Antigen Expressed Under the Human<br>Keratin 14 Promoter. Journal of Immunology, 2002, 169, 2141-2147.    | 0.8  | 52        |
| 29 | T cell receptor editing. Immunology Letters, 2000, 75, 27-31.                                                                                                         | 2.5  | 3         |
| 30 | Receptor editing in developing T cells. Nature Immunology, 2000, 1, 336-341.                                                                                          | 14.5 | 139       |
| 31 | Identification of a Naturally Occurring Ligand for Thymic Positive Selection. Immunity, 1997, 6, 389-399.                                                             | 14.3 | 171       |