Hwan Tae Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2832152/publications.pdf

Version: 2024-02-01

86 papers

2,789 citations

30 h-index 197818 49 g-index

86 all docs 86 docs citations

86 times ranked 4417 citing authors

#	Article	IF	CITATIONS
1	AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. NeuroReport, 1993, 4, 1263-1265.	1.2	205
2	Slit proteins: molecular guidance cues for cells ranging from neurons to leukocytes. Current Opinion in Genetics and Development, 2002, 12, 583-591.	3.3	194
3	Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and) Tj ETQq1 1 (Research, 1993, 18, 141-151.	0.784314 r 2.3	rgBT /Overlo <mark>ck</mark> 180
4	Inverse agonist of estrogen-related receptor \hat{I}^3 controls Salmonella typhimurium infection by modulating host iron homeostasis. Nature Medicine, 2014, 20, 419-424.	30.7	127
5	Autophagic myelin destruction by schwann cells during wallerian degeneration and segmental demyelination. Glia, 2016, 64, 730-742.	4.9	120
6	Actin Polymerization Is Essential for Myelin Sheath Fragmentation during Wallerian Degeneration. Journal of Neuroscience, 2011, 31, 2009-2015.	3.6	96
7	Assessment of mitophagy in mtâ€Keima <i>Drosophila</i> revealed an essential role of the PINK1â€Parkin pathway in mitophagy induction <i>in vivo</i> FASEB Journal, 2019, 33, 9742-9751.	0.5	67
8	Activation of the Nrf2/HO-1 signaling pathway contributes to the protective effects of baicalein against oxidative stress-induced DNA damage and apoptosis in HEI193 Schwann cells. International Journal of Medical Sciences, 2019, 16, 145-155.	2.5	62
9	Molecular control of neuronal migration. BioEssays, 2002, 24, 821-827.	2.5	61
10	Proteasome inhibition suppresses Schwann cell dedifferentiation <i>in vitro</i> and <i>in vivo</i> Glia, 2009, 57, 1825-1834.	4.9	54
11	Wallerian demyelination: chronicle of a cellular cataclysm. Cellular and Molecular Life Sciences, 2017, 74, 4049-4057.	5.4	54
12	Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. International Journal of Molecular Medicine, 2019, 43, 682-692.	4.0	54
13	Interleukinâ€6 is required for the early induction of glial fibrillary acidic protein in Schwann cells during Wallerian degeneration. Journal of Neurochemistry, 2009, 108, 776-786.	3.9	50
14	Fucoidan inhibits lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and zebrafish larvae. Molecular and Cellular Toxicology, 2017, 13, 405-417.	1.7	48
15	Pathological adaptive responses of Schwann cells to endoplasmic reticulum stress in bortezomibâ€induced peripheral neuropathy. Clia, 2010, 58, 1961-1976.	4.9	47
16	Nidogen is a prosurvival and promigratory factor for adult Schwann cells. Journal of Neurochemistry, 2007, 102, 686-698.	3.9	45
17	Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience, 2013, 238, 258-269.	2.3	45
18	The Neuregulinâ€Racâ€MKK7 pathway regulates antagonistic câ€jun/Krox20 expression in Schwann cell dedifferentiation. Glia, 2013, 61, 892-904.	4.9	44

#	Article	IF	Citations
19	Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biology, 2017, 15, e2001408.	5.6	44
20	A Mutation in PMP2 Causes Dominant Demyelinating Charcot-Marie-Tooth Neuropathy. PLoS Genetics, 2016, 12, e1005829.	3.5	44
21	Netrin induces down-regulation of its receptor, Deleted in Colorectal Cancer, through the ubiquitin-proteasome pathway in the embryonic cortical neuron. Journal of Neurochemistry, 2005, 95, 1-8.	3.9	41
22	Autophagy Is Involved in the Reduction of Myelinating Schwann Cell Cytoplasm during Myelin Maturation of the Peripheral Nerve. PLoS ONE, 2015, 10, e0116624.	2.5	40
23	Schwann cell dedifferentiation-associated demyelination leads to exocytotic myelin clearance in inflammatory segmental demyelination. Glia, 2017, 65, 1848-1862.	4.9	39
24	Acute bulbar palsy as a variant of Guillain-Barré syndrome. Neurology, 2016, 86, 742-747.	1.1	37
25	Isocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH). PLoS Genetics, 2017, 13, e1006975.	3.5	37
26	Calmodulin-dependent activation of p38 and p42/44 mitogen-activated protein kinases contributes to c-fos expression by calcium in PC12 cells: modulation by nitric oxide. Molecular Brain Research, 2000, 75, 16-24.	2.3	36
27	Mitogen Activated Protein Kinase Family Proteins and c-jun Signaling in Injury-induced Schwann Cell Plasticity. Experimental Neurobiology, 2014, 23, 130-137.	1.6	36
28	Pmp22 mutant allele-specific siRNA alleviates demyelinating neuropathic phenotype in vivo. Neurobiology of Disease, 2017, 100, 99-107.	4.4	33
29	Light regulates Homer mRNA expression in the rat suprachiasmatic nucleus. Molecular Brain Research, 1997, 52, 318-322.	2.3	32
30	Netrin-1 induces proliferation of Schwann cells through Unc5b receptor. Biochemical and Biophysical Research Communications, 2007, 362, 1057-1062.	2.1	32
31	Profile of Fos-like immunoreactivity induction by light stimuli in the intergeniculate leaflet is different from that of the suprachiasmatic nucleus. Brain Research, 1993, 610, 334-339.	2.2	31
32	Identification of the basement membrane protein nidogen as a candidate ligand for tumor endothelial marker 7 in vitro and in vivo. FEBS Letters, 2006, 580, 2253-2257.	2.8	31
33	Local production of serum amyloid a is implicated in the induction of macrophage chemoattractants in Schwann cells during wallerian degeneration of peripheral nerves. Glia, 2012, 60, 1619-1628.	4.9	31
34	A novel mechanism of methylglyoxal cytotoxicity in neuroglial cells. Journal of Neurochemistry, 2009, 108, 273-284.	3.9	30
35	Transient lysosomal activation is essential for p75 nerve growth factor receptor expression in myelinated Schwann cells during Wallerian degeneration. Anatomy and Cell Biology, 2011, 44, 41.	1.0	29
36	Grb2-Associated Binder-1 Is Required for Neuregulin-1-Induced Peripheral Nerve Myelination. Journal of Neuroscience, 2014, 34, 7657-7662.	3.6	28

#	Article	IF	CITATIONS
37	Distributional characteristics of the mRNA for retinoid Z receptor \hat{l}^2 (RZR \hat{l}^2), a putative nuclear melatonin receptor, in the rat brain and spinal cord. Brain Research, 1997, 747, 332-337.	2.2	27
38	MicroRNA Mediated Regulation of Schwann Cell Migration and Proliferation in Peripheral Nerve Injury. BioMed Research International, 2018, 2018, 1-7.	1.9	27
39	Cloning, characterization and neuronal expression profiles of tumor endothelial marker 7 in the rat brain. Molecular Brain Research, 2005, 136, 189-198.	2.3	25
40	The conceptual introduction of the "demyelinating Schwann cell―in peripheral demyelinating neuropathies. Glia, 2019, 67, 571-581.	4.9	25
41	Rac1 GTPase controls myelination and demyelination. Bioarchitecture, 2011, 1, 110-113.	1.5	24
42	Drp1 Phosphorylation Is Indispensable for Steroidogenesis in Leydig Cells. Endocrinology, 2019, 160, 729-743.	2.8	24
43	Cooperative interaction of hepatocyte growth factor and neuregulin regulates Schwann cell migration and proliferation through Grb2-associated binder-2 in peripheral nerve repair. Glia, 2017, 65, 1794-1808.	4.9	22
44	Protective Effect of Baicalein on Oxidative Stress-induced DNA Damage and Apoptosis in RT4-D6P2T Schwann Cells. International Journal of Medical Sciences, 2019, 16, 8-16.	2.5	22
45	The modulation of radiation-induced cell death by genistein in K562 cells: Activation of thymidine kinase 1. Cell Research, 2004, 14, 295-302.	12.0	21
46	Capsaicin inhibits the IL-6/STAT3 pathway by depleting intracellular gp130 pools through endoplasmic reticulum stress. Biochemical and Biophysical Research Communications, 2009, 382, 445-450.	2.1	19
47	Natural agents mediated autophagic signal networks in cancer. Cancer Cell International, 2017, 17, 110.	4.1	19
48	p75 and neural cell adhesion molecule 1 can identify pathologic Schwann cells in peripheral neuropathies. Annals of Clinical and Translational Neurology, 2019, 6, 1292-1301.	3.7	18
49	Exosomes derived from differentiated Schwann cells inhibit Schwann cell migration via microRNAs. NeuroReport, 2020, 31, 515-522.	1.2	17
50	Calcium-dependent proteasome activation is required for axonal neurofilament degradation. Neural Regeneration Research, 2013, 8, 3401-9.	3.0	17
51	Cell type-specific STAT3 activation by gp130-related cytokines in the peripheral nerves. NeuroReport, 2009, 20, 663-668.	1.2	16
52	Expression of $\hat{l}\pm B$ -crystallin overrides the anti-apoptotic activity of XIAP. Neuro-Oncology, 2012, 14, 1332-1345.	1.2	16
53	Downregulation MIWI-piRNA regulates the migration of Schwann cells in peripheral nerve injury. Biochemical and Biophysical Research Communications, 2019, 519, 605-612.	2.1	16
54	Calcitonin gene-related peptide-like immunoreactive (CGRPI) elements in the circadian system of the mouse: an immunohistochemistry combined with retrograde transport study. Brain Research, 1993, 629, 335-341.	2.2	15

#	Article	IF	CITATIONS
55	Netrin Inhibits Regenerative Axon Growth of Adult Dorsal Root Ganglion Neurons in Vitro. Journal of Korean Medical Science, 2007, 22, 641.	2.5	15
56	Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats. Journal of Magnetic Resonance Imaging, 2015, 42, 617-623.	3.4	15
57	Two faces of Schwann cell dedifferentiation in peripheral neurodegenerative diseases: pro-demyelinating and axon-preservative functions. Neural Regeneration Research, 2014, 9, 1952.	3.0	15
58	Injury-induced CRMP4 expression in adult sensory neurons; a possible target gene for ciliary neurotrophic factor. Neuroscience Letters, 2010, 485, 37-42.	2.1	14
59	Palmitate induces lipoapoptosis in Schwann cells through ROS generation-mediated STAMP2 downregulation. Biochemical and Biophysical Research Communications, 2018, 503, 1260-1266.	2.1	14
60	Upregulation of microRNA 344a-3p is involved in curcumin induced apoptosis in RT4 schwannoma cells. Cancer Cell International, 2018, 18, 199.	4.1	12
61	Behind the pathology of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells. Cellular and Molecular Life Sciences, 2020, 77, 2497-2506.	5.4	12
62	Nidogen Plays a Role in the Regenerative Axon Growth of Adult Sensory Neurons Through Schwann Cells. Journal of Korean Medical Science, 2009, 24, 654.	2.5	11
63	Interleukin-6 induces proinflammatory signaling in Schwann cells: A high-throughput analysis. Biochemical and Biophysical Research Communications, 2009, 382, 410-414.	2.1	11
64	Protein kinase A activity is required for depolarization-induced proline-rich tyrosine kinase 2 and mitogen-activated protein kinase activation in PC12 cells. Neuroscience Letters, 2000, 290, 25-28.	2.1	10
65	zVAD-fmk, unlike BocD-fmk, does not inhibit caspase-6 acting on 14-3-3/Bad pathway in apoptosis of p815 mastocytoma cells. Experimental and Molecular Medicine, 2006, 38, 634-642.	7.7	10
66	Down-regulation of UNC5 homologue expression after the spinal cord injury in the adult rat. Neuroscience Letters, 2007, 419, 43-48.	2.1	10
67	A <i>De NovoRAPGEF2</i> Variant Identified in a Sporadic Amyotrophic Lateral Sclerosis Patient Impairs Microtubule Stability and Axonal Mitochondria Distribution. Experimental Neurobiology, 2018, 27, 550-563.	1.6	10
68	A purified extract from Clematis mandshurica prevents staurosporin-induced downregulation of 14-3-3 and subsequent apoptosis on rat chondrocytes. Journal of Ethnopharmacology, 2007, 111, 213-218.	4.1	8
69	Acute changes of nidogen immunoreactivity in the basal lamina of the spinal cord vessels following dorsal hemisection without correlative changes of nidogen gene expression. Acta Histochemica, 2007, 109, 446-453.	1.8	7
70	Expression of tumor endothelial marker 7 mRNA and protein in the dorsal root ganglion neurons of the rat. Neuroscience Letters, 2006, 402, 71-75.	2.1	6
71	The Scaffolding Protein, Grb2-associated Binder-1, in Skeletal Muscles and Terminal Schwann Cells Regulates Postnatal Neuromuscular Synapse Maturation. Experimental Neurobiology, 2017, 26, 141-150.	1.6	6
72	Lossâ€ofâ€function of EBP50 is a new cause of hereditary peripheral neuropathy: EBP50 functions in peripheral nerve system. Glia, 2020, 68, 1794-1809.	4.9	6

#	Article	IF	CITATIONS
73	Potential neuronâ€autonomous Purkinje cell degeneration by 2′,3′â€cyclic nucleotide 3′â€phosphodies promoter/Creâ€mediated autophagy impairments. FASEB Journal, 2021, 35, e21225.	terase 0.5	6
74	Postnatal development of detergent-insoluble properties of NMDA and AMPA receptor subunits in the rat brain synaptic membrane. Developmental Brain Research, 1999, 115, 83-87.	1.7	5
75	Serum CXCL13 reflects local B-cell mediated inflammatory demyelinating peripheral neuropathy. Scientific Reports, 2019, 9, 16535.	3.3	5
76	Tyrphostin ErbB2 Inhibitors AG825 and AG879 Have Non-specific Suppressive Effects on gp130/ STAT3 Signaling. Korean Journal of Physiology and Pharmacology, 2008, 12, 281.	1.2	4
77	Aminosalicylic acid reduces ER stress and Schwann cell death induced by MPZ mutations. International Journal of Molecular Medicine, 2019, 44, 125-134.	4.0	4
78	Differential expression of circular RNAs in the proximal and distal segments of the sciatic nerve after injury. NeuroReport, 2020, 31, 76-84.	1.2	4
79	Finger drop sign as a new variant of acute motor axonal neuropathy. Muscle and Nerve, 2021, 63, 336-343.	2.2	4
80	Expression Profile of Fas-Fas Ligand in Spiral Ganglion Cells During Apoptosis. Clinical and Experimental Otorhinolaryngology, 2014, 7, 1.	2.1	4
81	Ophthalmoplegic Guillain-Barré syndrome: An independent entity or a transitional spectrum?. Journal of Clinical Neuroscience, 2016, 32, 19-23.	1.5	3
82	Netrin-1 Specifically Enhances Cell Spreading on Fibronectin in Human Glioblastoma Cells. Korean Journal of Physiology and Pharmacology, 2008, 12, 225.	1.2	1
83	Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats. Journal of Magnetic Resonance Imaging, 2015, 42, spcone-spcone.	3.4	1
84	MicroRNAs 93-5p, 106b-5p, 17-5p, and 140-5p target the expression of early growth response protein 2 in Schwann cells. NeuroReport, 2019, 30, 241-246.	1.2	1
85	Scaffolding protein Gab2 is involved in postnatal development and lipopolysaccharide-induced activation of microglia in the mouse brain. Biochemical and Biophysical Research Communications, 2021, 567, 112-117.	2.1	1
86	Proteasome inhibition suppresses injuryâ€induced myelin ovoid formation and Schwann cell dedifferentiation in the peripheral nerves. FASEB Journal, 2010, 24, .	0.5	O