
Yanming Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2831946/publications.pdf Version: 2024-02-01

YANMING WANG

#	Article	lF	CITATIONS
1	Atoms to fibers: Identifying novel processing methods in the synthesis of pitch-based carbon fibers. Science Advances, 2022, 8, eabn1905.	10.3	12
2	Accelerating amorphous polymer electrolyte screening by learning to reduce errors in molecular dynamics simulated properties. Nature Communications, 2022, 13, .	12.8	18
3	Overpotential-Regulated Stable Cycling of a Thin Magnesium Metal Anode. ACS Applied Materials & Interfaces, 2022, 14, 31435-31447.	8.0	4
4	Cation-Dependent Interfacial Structures and Kinetics for Outer-Sphere Electron-Transfer Reactions. Journal of Physical Chemistry C, 2021, 125, 4397-4411.	3.1	38
5	Revealing Au ₁₃ as Elementary Clusters During the Early Formation of Au Nanocrystals. Journal of Physical Chemistry Letters, 2021, 12, 5938-5943.	4.6	6
6	Cation- and pH-Dependent Hydrogen Evolution and Oxidation Reaction Kinetics. Jacs Au, 2021, 1, 1674-1687.	7.9	109
7	Bending and precipitate formation mechanisms in epitaxial Ge-core/GeSn-shell nanowires. Nanoscale, 2021, 13, 17547-17555.	5.6	6
8	Atomic Structure of Dislocations and Grain Boundaries in Two-Dimensional PtSe ₂ . ACS Nano, 2021, 15, 16748-16759.	14.6	12
9	Effect of Chemical Variations in the Structure of Poly(ethylene oxide)-Based Polymers on Lithium Transport in Concentrated Electrolytes. Chemistry of Materials, 2020, 32, 121-126.	6.7	27
10	Cyclobutene based macrocycles. Materials Chemistry Frontiers, 2020, 4, 3529-3538.	5.9	3
11	Topological origin of strain induced damage of multi-network elastomers by bond breaking. Extreme Mechanics Letters, 2020, 40, 100883.	4.1	19
12	Collector Droplet Behavior during Formation of Nanowire Junctions. Journal of Physical Chemistry Letters, 2020, 11, 6498-6504.	4.6	1
13	Growth mode control for direct-gap core/shell Ge/GeSn nanowire light emission. Materials Today, 2020, 40, 101-113.	14.2	22
14	Toward Designing Highly Conductive Polymer Electrolytes by Machine Learning Assisted Coarse-Grained Molecular Dynamics. Chemistry of Materials, 2020, 32, 4144-4151.	6.7	63
15	Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes beyond eye-limiting resolution. Nature Communications, 2020, 11, 3040.	12.8	53
16	Ionic Highways from Covalent Assembly in Highly Conducting and Stable Anion Exchange Membrane Fuel Cells. Journal of the American Chemical Society, 2019, 141, 18152-18159.	13.7	99
17	Coupling of coherent misfit strain and composition distributions in core–shell Ge/Ge1-xSnx nanowire light emitters. Materials Today Nano, 2019, 5, 100026.	4.6	17
18	Graph dynamical networks for unsupervised learning of atomic scale dynamics in materials. Nature Communications, 2019, 10, 2667.	12.8	82

YANMING WANG

#	Article	IF	CITATIONS
19	Revealing the Clusterâ€Cloud and Its Role in Nanocrystallization. Advanced Materials, 2019, 31, e1808225.	21.0	41
20	Anisotropic Epitaxial Behavior in the Amorphous Phase-Mediated Hydroxyapatite Crystallization Process: A New Understanding of Orientation Control. Journal of Physical Chemistry Letters, 2019, 10, 7611-7616.	4.6	15
21	Phase-field investigation of the stages in radial growth of core–shell Ge/Ge _{1â^'x} Sn _x nanowires. Nanoscale, 2019, 11, 21974-21980.	5.6	3
22	Anisotropy effect on strain-induced instability during growth of heteroepitaxial films. Journal of Materials Science, 2018, 53, 5777-5785.	3.7	5
23	Discrete shear band plasticity through dislocation activities in body-centered cubic tungsten nanowires. Scientific Reports, 2018, 8, 4574.	3.3	22
24	Predicting stability of nanofin arrays against collapse by phase field modeling. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 051602.	1.2	2
25	Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science, 2017, 355, 59-64.	12.6	897
26	Reliability of Single Crystal Silver Nanowire-Based Systems: Stress Assisted Instabilities. ACS Nano, 2017, 11, 4768-4776.	14.6	26
27	Phase Field Model for Morphological Transition in Nanowire Vapor–Liquid–Solid Growth. Crystal Growth and Design, 2017, 17, 2211-2217.	3.0	12
28	Au–Ge MEAM potential fitted to the binary phase diagram. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 025004.	2.0	5
29	Atomistic mechanisms of orientation and temperature dependence in gold-catalyzed silicon growth. Journal of Applied Physics, 2017, 122, 085106.	2.5	3
30	Spontaneous, Defect-Free Kinking via Capillary Instability during Vapor–Liquid–Solid Nanowire Growth. Nano Letters, 2016, 16, 1713-1718.	9.1	15
31	Competing effects of interface anisotropy and isotropic driving force on the growth of steady-state shape in phase-field modeling. Computational Materials Science, 2016, 111, 313-321.	3.0	2
32	Shapeâ€Controlled, Selfâ€Wrapped Carbon Nanotube 3D Electronics. Advanced Science, 2015, 2, 1500103.	11.2	32
33	A three-dimensional phase field model for nanowire growth by the vapor–liquid–solid mechanism. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 055005.	2.0	16