J Donald Tournier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/283044/publications.pdf Version: 2024-02-01

		71102	37204
101	18,229	41	96
papers	citations	h-index	g-index
110	110	110	10400
113	113	113	10492
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	An MR fingerprinting approach for quantitative inhomogeneous magnetization transfer imaging. Magnetic Resonance in Medicine, 2022, 87, 220-235.	3.0	7
2	Predicting age and clinical risk from the neonatal connectome. NeuroImage, 2022, 257, 119319.	4.2	11
3	The Developing Human Connectome Project Neonatal Data Release. Frontiers in Neuroscience, 2022, 16,	2.8	42
4	The developing brain structural and functional connectome fingerprint. Developmental Cognitive Neuroscience, 2022, 55, 101117.	4.0	5
5	Scattered slice SHARD reconstruction for motion correction in multi-shell diffusion MRI. NeuroImage, 2021, 225, 117437.	4.2	44
6	Diffusion magnetic resonance imaging assessment of regional white matter maturation in preterm neonates. Neuroradiology, 2021, 63, 573-583.	2.2	10
7	Development of human white matter pathways in utero over the second and third trimester. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	55
8	Multi-Channel 4D Parametrized Atlas of Macro- and Microstructural Neonatal Brain Development. Frontiers in Neuroscience, 2021, 15, 661704.	2.8	8
9	Brain network hubs and cognitive performance of survivors of childhood infratentorial tumors. Radiotherapy and Oncology, 2021, 161, 118-125.	0.6	5
10	dStripe: Slice artefact correction in diffusion MRI via constrained neural network. Medical Image Analysis, 2021, 74, 102255.	11.6	3
11	Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. NeuroImage, 2021, 243, 118488.	4.2	40
12	Higher Order Spherical Harmonics Reconstruction of Fetal Diffusion MRI With Intensity Correction. IEEE Transactions on Medical Imaging, 2020, 39, 1104-1113.	8.9	20
13	On the need for bundle-specific microstructure kernels in diffusion MRI. NeuroImage, 2020, 208, 116460.	4.2	9
14	Reduced structural connectivity in cortico-striatal-thalamic network in neonates with congenital heart disease. NeuroImage: Clinical, 2020, 28, 102423.	2.7	14
15	Fetal whole heart blood flow imaging using 4D cine MRI. Nature Communications, 2020, 11, 4992.	12.8	26
16	Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results. NeuroImage, 2020, 221, 117128.	4.2	54
17	A dataâ€driven approach to optimising the encoding for multiâ€shell diffusion MRI with application to neonatal imaging. NMR in Biomedicine, 2020, 33, e4348.	2.8	18
18	Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathologica Communications, 2020, 8, 141.	5.2	17

#	Article	IF	CITATIONS
19	Heterogeneity in Brain Microstructural Development Following Preterm Birth. Cerebral Cortex, 2020, 30, 4800-4810.	2.9	54
20	Multi-channel Registration for Diffusion MRI: Longitudinal Analysis for the Neonatal Brain. Lecture Notes in Computer Science, 2020, , 111-121.	1.3	3
21	Modeling Fiber Orientations Using Diffusion MRI. Advances in Magnetic Resonance Technology and Applications, 2020, 1, 509-532.	0.1	Ο
22	Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. NeuroImage, 2019, 185, 750-763.	4.2	127
23	Modelling white matter with spherical deconvolution: How and why?. NMR in Biomedicine, 2019, 32, e3945.	2.8	127
24	MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 2019, 202, 116137.	4.2	1,555
25	Inherent and unpredictable bias in multi-component DESPOT myelin water fraction estimation. NeuroImage, 2019, 195, 78-88.	4.2	45
26	Motor Abilities in Adolescents Born Preterm Are Associated With Microstructure of the Corpus Callosum. Frontiers in Neurology, 2019, 10, 367.	2.4	7
27	Diffusion MRI in the brain – Theory and concepts. Progress in Nuclear Magnetic Resonance Spectroscopy, 2019, 112-113, 1-16.	7.5	51
28	Fixel-based analysis of the preterm brain: Disentangling bundle-specific white matter microstructural and macrostructural changes in relation to clinical risk factors. NeuroImage: Clinical, 2019, 23, 101820.	2.7	27
29	A longitudinal fixel-based analysis of white matter alterations in patients with Parkinson's disease. NeuroImage: Clinical, 2019, 24, 102098.	2.7	35
30	Learning Compact <inline-formula> <tex-math notation="LaTeX">\${q}\$ </tex-math> </inline-formula> -Space Representations for Multi-Shell Diffusion-Weighted MRI. IEEE Transactions on Medical Imaging, 2019, 38, 834-843.	8.9	19
31	A framework for multi-component analysis of diffusion MRI data over the neonatal period. NeuroImage, 2019, 186, 321-337.	4.2	47
32	Reply: Cortical tau pathology: a major player in fibre-specific white matter reductions in Alzheimer's disease?. Brain, 2018, 141, e45-e45.	7.6	4
33	The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neurolmage, 2018, 173, 88-112.	4.2	315
34	Fibre-specific white matter reductions in Alzheimer's disease and mild cognitive impairment. Brain, 2018, 141, 888-902.	7.6	226
35	Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND). Scientific Reports, 2018, 8, 4011.	3.3	47
36	Timeâ€efficient and flexible design of optimized multishell HARDI diffusion. Magnetic Resonance in Medicine, 2018, 79, 1276-1292.	3.0	72

#	Article	IF	CITATIONS
37	The role of wholeâ€brain diffusion MRI as a tool for studying human in vivo cortical segregation based on a measure of neurite density. Magnetic Resonance in Medicine, 2018, 79, 2738-2744.	3.0	33
38	Slice-level diffusion encoding for motion and distortion correction. Medical Image Analysis, 2018, 48, 214-229.	11.6	22
39	Developing a Framework for Studying Brain Networks in Neonatal Hypoxic-Ischemic Encephalopathy. Communications in Computer and Information Science, 2018, , 203-216.	0.5	1
40	Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage, 2017, 149, 379-392.	4.2	187
41	Language ability in preterm children is associated with arcuate fasciculi microstructure at term. Human Brain Mapping, 2017, 38, 3836-3847.	3.6	40
42	Tractâ€specific atrophy in focal epilepsy: Disease, genetics, or seizures?. Annals of Neurology, 2017, 81, 240-250.	5.3	34
43	Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Scientific Reports, 2017, 7, 12841.	3.3	152
44	Cerebello-cerebral connectivity in the developing brain. Brain Structure and Function, 2017, 222, 1625-1634.	2.3	22
45	Investigating white matter fibre density and morphology using fixel-based analysis. NeuroImage, 2017, 144, 58-73.	4.2	437
46	Periventricular Nodular Heterotopia: Detection of Abnormal Microanatomic Fiber Structures with Whole-Brain Diffusion MR Imaging Tractography. Radiology, 2016, 281, 896-906.	7.3	23
47	Predicting hand function after hemidisconnection. Brain, 2016, 139, 2456-2468.	7.6	34
48	Introduction to Diffusion Tensor Imaging. , 2016, , 7-19.		9
49	High Angular Resolution Diffusion Imaging. , 2016, , 383-406.		5
50	Reconstructing contralateral fiber tracts: methodological aspect of cerebello-thalamo-cortical pathway reconstruction. Functional Neurology, 2016, 31, 229-238.	1.3	11
51	Quantification of voxel-wise total fibre density: Investigating the problems associated with track-count mapping. NeuroImage, 2015, 117, 284-293.	4.2	44
52	Advanced Fiber Tracking in Early Acquired Brain Injury Causing Cerebral Palsy. American Journal of Neuroradiology, 2015, 36, 181-187.	2.4	17
53	Contralateral cerebello-thalamo-cortical pathways with prominent involvement of associative areas in humans in vivo. Brain Structure and Function, 2015, 220, 3369-3384.	2.3	154
54	The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. NeuroImage, 2015, 104, 253-265.	4.2	213

#	Article	IF	CITATIONS
55	Fourier Tract Sampling (FouTS): A framework for improved inference of white matter tracts from diffusion MRI by explicitly modelling tract volume. NeuroImage, 2015, 120, 412-427.	4.2	6
56	Connectivity-based fixel enhancement: Whole-brain statistical analysis of diffusion MRI measures in the presence of crossing fibres. NeuroImage, 2015, 117, 40-55.	4.2	276
57	SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage, 2015, 119, 338-351.	4.2	506
58	Fiber Tracking with DWI. , 2015, , 265-269.		0
59	A variable flip angle-based method for reducing blurring in 3D GRASE ASL. Physics in Medicine and Biology, 2014, 59, 5559-5573.	3.0	17
60	Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage, 2014, 103, 411-426.	4.2	1,063
61	Mapping somatosensory connectivity in adult mice using diffusion MRI tractography and super-resolution track density imaging. NeuroImage, 2014, 102, 381-392.	4.2	15
62	Alterations in the optic radiations of very preterm children—Perinatal predictors and relationships with visual outcomes. NeuroImage: Clinical, 2014, 4, 145-153.	2.7	35
63	Quantification of track-weighted imaging (TWI): Characterisation of within-subject reproducibility and between-subject variability. NeuroImage, 2014, 87, 18-31.	4.2	36
64	Identification and interpretation of microstructural abnormalities in motor pathways in adolescents born preterm. NeuroImage, 2014, 87, 209-219.	4.2	92
65	Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping, 2013, 34, 2747-2766.	3.6	887
66	Track-weighted functional connectivity (TW-FC): A tool for characterizing the structural–functional connections in the brain. NeuroImage, 2013, 70, 199-210.	4.2	40
67	Beyond the lesion: neuroimaging foundations for post-stroke recovery. Future Neurology, 2013, 8, 507-527.	0.5	29
68	Pediatric traumatic brain injury: Language outcomes and their relationship to the arcuate fasciculus. Brain and Language, 2013, 127, 388-398.	1.6	25
69	SIFT: Spherical-deconvolution informed filtering of tractograms. NeuroImage, 2013, 67, 298-312.	4.2	573
70	Super-resolution track-density imaging of thalamic substructures: Comparison with high-resolution anatomical magnetic resonance imaging at 7.0T. Human Brain Mapping, 2013, 34, 2538-2548.	3.6	61
71	White matter fiber tractography: why we need to move beyond DTI. Journal of Neurosurgery, 2013, 118, 1367-1377.	1.6	386
72	Determination of the appropriate <i>b</i> value and number of gradient directions for highâ€angularâ€resolution diffusionâ€weighted imaging. NMR in Biomedicine, 2013, 26, 1775-1786.	2.8	346

#	Article	IF	CITATIONS
73	Corticobulbar tract changes as predictors of dysarthria in childhood brain injury. Neurology, 2013, 80, 926-932.	1.1	32
74	Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm. Brain, 2012, 135, 3781-3798.	7.6	100
75	Super-resolution track-density imaging studies of mouse brain: Comparison to histology. NeuroImage, 2012, 59, 286-296.	4.2	105
76	A generalised framework for super-resolution track-weighted imaging. NeuroImage, 2012, 59, 2494-2503.	4.2	77
77	Apparent Fibre Density: A novel measure for the analysis of diffusion-weighted magnetic resonance images. NeuroImage, 2012, 59, 3976-3994.	4.2	491
78	Anatomically-constrained tractography: Improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage, 2012, 62, 1924-1938.	4.2	897
79	Reorientation of fiber orientation distributions using apodized point spread functions. Magnetic Resonance in Medicine, 2012, 67, 844-855.	3.0	103
80	Speech and Oromotor Outcome in Adolescents Born Preterm: Relationship to Motor Tract Integrity. Journal of Pediatrics, 2012, 160, 402-408.e1.	1.8	35
81	MRtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 2012, 22, 53-66.	4.1	1,191
82	A <i>k</i> â€space sharing 3D GRASE pseudocontinuous ASL method for wholeâ€brain restingâ€state functional connectivity. International Journal of Imaging Systems and Technology, 2012, 22, 37-43.	4.1	25
83	Symmetric diffeomorphic registration of fibre orientation distributions. NeuroImage, 2011, 56, 1171-1180.	4.2	229
84	Track density imaging (TDI): Validation of super resolution property. NeuroImage, 2011, 56, 1259-1266.	4.2	92
85	Diffusion tensor imaging and beyond. Magnetic Resonance in Medicine, 2011, 65, 1532-1556.	3.0	771
86	Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution. Human Brain Mapping, 2011, 32, 461-479.	3.6	335
87	INCITE: A randomised trial comparing constraint induced movement therapy and bimanual training in children with congenital hemiplegia. BMC Neurology, 2010, 10, 4.	1.8	73
88	New anatomic MRI techniques. Epilepsia, 2010, 51, 80-82.	5.1	4
89	The effect of finite diffusion gradient pulse duration on fibre orientation estimation in diffusion MRI. NeuroImage, 2010, 51, 743-751.	4.2	22
90	Track-density imaging (TDI): Super-resolution white matter imaging using whole-brain track-density mapping. NeuroImage, 2010, 53, 1233-1243.	4.2	361

#	Article	IF	CITATIONS
91	The Biophysics of Crossing Fibers. , 2010, , 465-482.		13
92	A software tool to generate simulated white matter structures for the assessment of fibre-tracking algorithms. NeuroImage, 2009, 47, 1288-1300.	4.2	75
93	Evaluation of the accuracy and angular resolution of q-ball imaging. NeuroImage, 2008, 42, 262-271.	4.2	41
94	Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. NeuroImage, 2008, 42, 617-625.	4.2	524
95	Estimation of uncertainty in constrained spherical deconvolution fiber orientations. , 2008, , .		5
96	Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 2007, 35, 1459-1472.	4.2	1,860
97	Cortical abnormalities and language function in young patients with basal ganglia stroke. NeuroImage, 2007, 36, 431-440.	4.2	21
98	Quantification of the shape of fiber tracts. Magnetic Resonance in Medicine, 2006, 55, 894-903.	3.0	82
99	Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage, 2004, 23, 1176-1185.	4.2	1,466
100	Diffusion-weighted magnetic resonance imaging fibre tracking using a front evolution algorithm. NeuroImage, 2003, 20, 276-288.	4.2	64
101	Limitations and requirements of diffusion tensor fiber tracking: An assessment using simulations. Magnetic Resonance in Medicine, 2002, 47, 701-708.	3.0	103