Kevin J Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2828803/publications.pdf

Version: 2024-02-01

		66343	58581
95	7,303	42	82
papers	citations	h-index	g-index
102	102	102	3580
102	102	102	3360
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Global geologic map of asteroid (101955) Bennu indicates heterogeneous resurfacing in the past 500,000Âyears. Icarus, 2022, 381, 114992.	2.5	13
2	Geologic Context of the OSIRIS-REx Sample Site from High-resolution Topography and Imaging. Planetary Science Journal, 2022, 3, 75.	3.6	10
3	Crater population on asteroid (101955) Bennu indicates impact armouring and a young surface. Nature Geoscience, 2022, 15, 440-446.	12.9	20
4	The Formation of Terraces on Asteroid (101955) Bennu. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	14
5	Low surface strength of the asteroid Bennu inferred from impact ejecta deposit. Nature Geoscience, 2022, 15, 447-452.	12.9	19
6	Assessing the Sampleability of Bennu's Surface for the OSIRIS-REx Asteroid Sample Return Mission. Space Science Reviews, 2022, 218, 20.	8.1	12
7	The morphometry of small impact craters on Bennu: Relationships to geologic units, boulders, and impact armoring. Icarus, 2022, 384, 115058.	2.5	3
8	Alignment of fractures on Bennu's boulders indicative of rapid asteroid surface evolution. Nature Geoscience, 2022, 15, 453-457.	12.9	11
9	The ESA Hera Mission: Detailed Characterization of the DART Impact Outcome and of the Binary Asteroid (65803) Didymos. Planetary Science Journal, 2022, 3, 160.	3.6	82
10	Near-zero cohesion and loose packing of Bennu's near subsurface revealed by spacecraft contact. Science Advances, 2022, 8, .	10.3	31
11	Spacecraft sample collection and subsurface excavation of asteroid (101955) Bennu. Science, 2022, 377, 285-291.	12.6	39
12	Efficiency characterization of the V-shape asteroid family detection method. Icarus, 2021, 357, 114218.	2.5	7
13	Exogenic basalt on asteroid (101955) Bennu. Nature Astronomy, 2021, 5, 31-38.	10.1	57
14	The Formation of Bilobate Comet Shapes through Sublimative Torques. Planetary Science Journal, 2021, 2, 14.	3.6	8
15	Chromium Isotopic Evidence for Mixing of NC and CC Reservoirs in Polymict Ureilites: Implications for Dynamical Models of the Early Solar System. Planetary Science Journal, 2021, 2, 13.	3.6	11
16	Particle Size-Frequency Distributions of the OSIRIS-REx Candidate Sample Sites on Asteroid (101955) Bennu. Remote Sensing, 2021, 13, 1315.	4.0	33
17	The Role of Hydrated Minerals and Space Weathering Products in the Bluing of Carbonaceous Asteroids. Planetary Science Journal, 2021, 2, 68.	3.6	14
18	Modified granular impact force laws for the OSIRIS-REx touchdown on the surface of asteroid (101955) Bennu. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5087-5105.	4.4	21

#	Article	lF	CITATIONS
19	Rotational states and shapes of Ryugu and Bennu: Implications for interior structure and strength. Planetary and Space Science, 2021, 204, 105268.	1.7	15
20	Internal rubble properties of asteroid (101955) Bennu. Icarus, 2021, 370, 114665.	2.5	15
21	Fine-regolith production on asteroids controlled by rock porosity. Nature, 2021, 598, 49-52.	27.8	45
22	Barrel Instability in Binary Asteroids. Planetary Science Journal, 2021, 2, 231.	3.6	8
23	Hemispherical differences in the shape and topography of asteroid (101955) Bennu. Science Advances, 2020, 6, .	10.3	57
24	Heterogeneous mass distribution of the rubble-pile asteroid (101955) Bennu. Science Advances, 2020, 6, .	10.3	50
25	Variations in color and reflectance on the surface of asteroid (101955) Bennu. Science, 2020, 370, .	12.6	84
26	Asteroid (101955) Bennu's weak boulders and thermally anomalous equator. Science Advances, 2020, 6,	10.3	83
27	Spin-driven evolution of asteroids' top-shapes at fast and slow spins seen from (101955) Bennu and (162173) Ryugu. Icarus, 2020, 352, 113946.	2.5	28
28	The Morphometry of Impact Craters on Bennu. Geophysical Research Letters, 2020, 47, e2020GL089672.	4.0	20
29	Charon: A Brief History of Tides. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006449.	3.6	4
30	Thermal Fatigue as a Driving Mechanism for Activity on Asteroid Bennu. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006325.	3.6	40
31	Bennu's near-Earth lifetime of 1.75 million years inferred from craters on its boulders. Nature, 2020, 587, 205-209.	27.8	62
32	Global Patterns of Recent Mass Movement on Asteroid (101955) Bennu. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006475.	3.6	60
33	Meteoroid Impacts as a Source of Bennu's Particle Ejection Events. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006282.	3. 6	30
34	Collisional formation of top-shaped asteroids and implications for the origins of Ryugu and Bennu. Nature Communications, 2020, 11, 2655.	12.8	87
35	In situ evidence of thermally induced rock breakdown widespread on Bennu's surface. Nature Communications, 2020, 11, 2913.	12.8	62
36	Interpreting the Cratering Histories of Bennu, Ryugu, and Other Spacecraft-explored Asteroids. Astronomical Journal, 2020, 160, 14.	4.7	34

#	Article	IF	Citations
37	Potential Themis-family Asteroid Contribution to the Jupiter-family Comet Population. Astronomical Journal, 2020, 159, 179.	4.7	15
38	Collisional Evolution of Meter- to Kilometer-sized Planetesimals in Mean Motion Resonances: Implications for Inward Planet Shepherding. Astrophysical Journal, 2020, 890, 170.	4.5	4
39	Volatile-rich Asteroids in the Inner Solar System. Planetary Science Journal, 2020, 1, 82.	3.6	7
40	Preservation of polar ice on near-Earth asteroids originating in the outer main belt: A model study with dynamical trajectories. Icarus, 2020, 348, 113865.	2.5	5
41	The early instability scenario: Terrestrial planet formation during the giant planet instability, and the effect of collisional fragmentation. Icarus, 2019, 321, 778-790.	2.5	72
42	Energy Dissipation in Large Collisionsâ€"No Change in Planet Formation Outcomes. Astrophysical Journal, 2019, 876, 103.	4.5	21
43	Geophysical evidence that Saturn's Moon Phoebe originated from a C-type asteroid reservoir. Monthly Notices of the Royal Astronomical Society, 2019, 486, 538-543.	4.4	12
44	The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements. Nature Astronomy, 2019, 3, 352-361.	10.1	132
45	Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis. Nature Astronomy, 2019, 3, 341-351.	10.1	188
46	Craters, boulders and regolith of (101955) Bennu indicative of an old and dynamic surface. Nature Geoscience, 2019, 12, 242-246.	12.9	161
47	Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nature Geoscience, 2019, 12, 247-252.	12.9	179
48	The unexpected surface of asteroid (101955) Bennu. Nature, 2019, 568, 55-60.	27.8	364
49	Planetesimals to terrestrial planets: Collisional evolution amidst a dissipating gas disk. Icarus, 2019, 329, 88-100.	2.5	44
50	Using a geometrical algorithm to provide <i>N</i> body initial conditions for the gravitational phase of asteroid family formation. Monthly Notices of the Royal Astronomical Society, 2019, 485, 697-707.	4.4	6
51	Mars' growth stunted by an early giant planet instability. Icarus, 2018, 311, 340-356.	2.5	108
52	Asteroid Ryugu before the Hayabusa2 encounter. Progress in Earth and Planetary Science, 2018, 5, .	3.0	39
53	Overcoming the Challenges Associated with Imageâ€Based Mapping of Small Bodies in Preparation for the OSIRISâ€REx Mission to (101955) Bennu. Earth and Space Science, 2018, 5, 929-949.	2.6	26
54	Initial velocity V-shapes of young asteroid families. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3949-3968.	4.4	12

#	Article	IF	CITATIONS
55	Size-dependent modification of asteroid family Yarkovsky V-shapes. Astronomy and Astrophysics, 2018, 611, A82.	5.1	10
56	Rubble Pile Asteroids. Annual Review of Astronomy and Astrophysics, 2018, 56, 593-624.	24.3	106
57	Yarkovsky V-shape identification of asteroid families. Icarus, 2017, 282, 290-312.	2.5	32
58	OSIRIS-REx: Sample Return from Asteroid (101955) Bennu. Space Science Reviews, 2017, 212, 925-984.	8.1	426
59	Identification of a primordial asteroid family constrains the original planetesimal population. Science, 2017, 357, 1026-1029.	12.6	81
60	Timing of the formation and migration of giant planets as constrained by CB chondrites. Science Advances, 2016, 2, e1601658.	10.3	38
61	Directed energy missions for planetary defense. Advances in Space Research, 2016, 58, 1093-1116.	2.6	21
62	Is the Grand Tack model compatible with the orbital distribution of main belt asteroids?. Icarus, 2016, 272, 114-124.	2.5	43
63	Portrait of the Polana–Eulalia family complex: Surface homogeneity revealed from near-infrared spectroscopy. Icarus, 2016, 274, 231-248.	2.5	24
64	The geophysical environment of Bennu. Icarus, 2016, 276, 116-140.	2.5	92
65	TERRESTRIAL PLANET FORMATION FROM AN ANNULUS. Astronomical Journal, 2016, 152, 68.	4.7	63
66	Visible spectroscopy of the Polana–Eulalia family complex: Spectral homogeneity. Icarus, 2016, 266, 57-75.	2.5	33
67	Orbital Simulations for Directed Energy Deflection of Near-Earth Asteroids. Procedia Engineering, 2015, 103, 671-678.	1.2	6
68	Forming terrestrial planets and delivering water. Proceedings of the International Astronomical Union, 2015, 11, 427-430.	0.0	1
69	Towards understanding the dynamical evolution of asteroid 25143 Itokawa: constraints from sample analysis. Earth, Planets and Space, 2015, 67, .	2.5	8
70	FORMATION AND EVOLUTION OF PLUTO'S SMALL SATELLITES. Astronomical Journal, 2015, 150, 11.	4.7	40
71	The OSIRISâ€REx target asteroid (101955) Bennu: Constraints on its physical, geological, and dynamical nature from astronomical observations. Meteoritics and Planetary Science, 2015, 50, 834-849.	1.6	168
72	Growing the terrestrial planets from the gradual accumulation of submeter-sized objects. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14180-14185.	7.1	142

#	Article	IF	Citations
73	In search of the source of asteroid (101955) Bennu: Applications of the stochastic YORP model. Icarus, 2015, 247, 191-217.	2.5	125
74	The Compositional Structure of the Asteroid Belt. , 2015, , .		249
75	The Dynamical Evolution of the Asteroid Belt. , 2015, , .		23
76	DE-STARLITE - A Directed Energy Planetary Defense Mission. , 2014, , .		10
77	Effects of asteroid rotation on directed energy deflection. Proceedings of SPIE, 2014, , .	0.8	6
78	Highly siderophile elements in Earth's mantle as a clock for the Moon-forming impact. Nature, 2014, 508, 84-87.	27.8	191
79	Water delivery and giant impacts in the â€~Grand Tack' scenario. Icarus, 2014, 239, 74-84.	2.5	209
80	Introducing the Eulalia and new Polana asteroid families: Re-assessing primitive asteroid families in the inner Main Belt. Icarus, 2013, 225, 283-297.	2.5	105
81	Constraining the primordial orbits of the terrestrial planets. Monthly Notices of the Royal Astronomical Society, 2013, 433, 3417-3427.	4.4	71
82	Shaping of the Inner Solar System by the Gas-Driven Migration of Jupiter. Proceedings of the International Astronomical Union, 2012, 8, 204-211.	0.0	0
83	Building Terrestrial Planets. Annual Review of Earth and Planetary Sciences, 2012, 40, 251-275.	11.0	392
84	Spin-up of rubble-pile asteroids: Disruption, satellite formation, and equilibrium shapes. Icarus, 2012, 220, 514-529.	2.5	114
85	Populating the asteroid belt from two parent source regions due to the migration of giant planets—"The Grand Tack― Meteoritics and Planetary Science, 2012, 47, 1941-1947.	1.6	118
86	PHYSICAL CHARACTERIZATION AND ORIGIN OF BINARY NEAR-EARTH ASTEROID (175706) 1996 FG3. Astrophysical Journal, 2012, 748, 104.	4.5	15
87	A low mass for Mars from Jupiter's early gas-driven migration. Nature, 2011, 475, 206-209.	27.8	992
88	The effect of an early planetesimal-driven migration of the giant planets on terrestrial planet formation. Astronomy and Astrophysics, 2011, 526, A126.	5.1	58
89	The cool surfaces of binary near-Earth asteroids. Icarus, 2011, 212, 138-148.	2.5	30
90	Stability analysis of the martian obliquity during the Noachian era. lcarus, 2011, 213, 423-427.	2.5	17

KEVIN J WALSH

#	Article	IF	CITATIONS
91	Numerical simulations of asteroids modelled as gravitational aggregates with cohesion. Planetary and Space Science, 2009, 57, 183-192.	1.7	84
92	A steady-state model of NEA binaries formed by tidal disruption of gravitational aggregates. Icarus, 2008, 193, 553-566.	2.5	42
93	Rotational breakup as the origin of small binary asteroids. Nature, 2008, 454, 188-191.	27.8	329
94	BINARY MINOR PLANETS. Annual Review of Earth and Planetary Sciences, 2006, 34, 47-81.	11.0	79
95	Binary near-Earth asteroid formation: Rubble pile model of tidal disruptions. Icarus, 2006, 180, 201-216.	2.5	95