Dmitri Kaganovich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2828530/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wakefield generation and GeV acceleration in tapered plasma channels. Physical Review E, 2001, 63, 056405.	2.1	113
2	High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel. Physical Review E, 1999, 59, R4769-R4772.	2.1	71
3	Variable profile capillary discharge for improved phase matching in a laser wakefield accelerator. Applied Physics Letters, 1999, 75, 772-774.	3.3	57
4	Guiding and damping of high-intensity laser pulses in long plasma channels. Journal of the Optical Society of America B: Optical Physics, 1998, 15, 2416.	2.1	47
5	Investigations of double capillary discharge scheme for production of wave guide in plasma. Applied Physics Letters, 1997, 71, 2925-2927.	3.3	45
6	Laser-Accelerated Ions from a Shock-Compressed Gas Foil. Physical Review Letters, 2016, 117, 165001.	7.8	38
7	Formation and propagation of meter-scale laser filaments in water. Applied Physics Letters, 2013, 103, 121101.	3.3	34
8	Simulation and design of stable channel-guided laser wakefield accelerators. Physical Review E, 2001, 63, 036502.	2.1	31
9	First demonstration of a staged all-optical laser wakefield acceleration. Physics of Plasmas, 2005, 12, 100702.	1.9	27
10	Shaping gas jet plasma density profile by laser generated shock waves. Journal of Applied Physics, 2014, 116, .	2.5	25
11	Velocity control and staging in laser wakefield accelerators using segmented capillary discharges. Applied Physics Letters, 2001, 78, 3175-3177.	3.3	24
12	High intensity focusing of laser pulses using a short plasma channel lens. Physics of Plasmas, 2002, 9, 1431-1442.	1.9	21
13	Measurements of intense femtosecond laser pulse propagation in air. Physics of Plasmas, 2005, 12, 056705.	1.9	21
14	Observation of Large-Angle Quasimonoenergetic Electrons from a Laser Wakefield. Physical Review Letters, 2008, 100, 215002.	7.8	19
15	Electro-Optic Shocks from Ultraintense Laser-Plasma Interactions. Physical Review Letters, 2008, 101, 045004.	7.8	18
16	Plasma lenses for ultrashort multi-petawatt laser pulses. Physics of Plasmas, 2015, 22, .	1.9	17
17	Stimulated Raman scattering and nonlinear focusing of high-power laser beams propagating in water. Optics Letters, 2015, 40, 1556.	3.3	17
18	Stimulated Raman and Brillouin scattering, nonlinear focusing, thermal blooming, and optical breakdown of a laser beam propagating in water. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 2062.	2.1	16

DMITRI KAGANOVICH

#	Article	IF	CITATIONS
19	Longitudinal profiles of plasma parameters in a laser-ignited capillary discharge and implications for laser wakefield accelerator applications. Applied Physics Letters, 2005, 87, 261501.	3.3	15
20	Measurement of Electro-Optic Shock and Electron Acceleration in a Strongly Cavitated Laser Wakefield Accelerator. Physical Review Letters, 2010, 105, 105001.	7.8	15
21	Origin and control of the subpicosecond pedestal in femtosecond laser systems. Optics Letters, 2013, 38, 3635.	3.3	15
22	Trapping and acceleration of nonideal injected electron bunches in laser Wakefield accelerators. IEEE Transactions on Plasma Science, 2005, 33, 712-722.	1.3	14
23	Long plasma channels in segmented capillary discharges. Physics of Plasmas, 2006, 13, 083108.	1.9	13
24	Electron density in low density capillary plasma channel. Applied Physics Letters, 2007, 90, 061501.	3.3	12
25	Measurements and simulations of shock wave generated plasma-vacuum interface. Physics of Plasmas, 2011, 18, .	1.9	12
26	Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics. Physics of Plasmas, 2016, 23, .	1.9	11
27	Transmission of high-power CO2 laser pulses through a plasma channel. Applied Physics Letters, 2003, 83, 3459-3461.	3.3	10
28	Spatially resolved interferometric measurement of a discharge capillary plasma channel. Physics of Plasmas, 2003, 10, 4504-4512.	1.9	10
29	Temporally resolved Raman backscattering diagnostic of high intensity laser channeling. Review of Scientific Instruments, 2002, 73, 2259-2265.	1.3	9
30	Extending electro-optic detection to ultrashort electron beams. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	8
31	Generation and measurements of high energy injection electrons from the high density laser ionization and ponderomotive acceleration. Physics of Plasmas, 2005, 12, 010701-010701-4.	1.9	7
32	Simulation of free-space optical guiding structure based on colliding gas flows. Applied Optics, 2015, 54, F144.	2.1	7
33	Nonlinear self-channeling of high-power lasers through controlled atmospheric turbulence. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 797.	2.1	7
34	On the cooling of the plasma fireball produced by a laser spark in front of liquids and solids. Physics of Plasmas, 1996, 3, 631-638.	1.9	6
35	Enhanced betatron X-rays from axially modulated plasma wakefields. Physics of Plasmas, 2015, 22, 063111.	1.9	6
36	Ideal form of optical plasma lenses. Physics of Plasmas, 2018, 25, 063101.	1.9	6

DMITRI KAGANOVICH

#	Article	IF	CITATIONS
37	Beating Optical-Turbulence Limits Using High-Peak-Power Lasers. Physical Review Applied, 2019, 12, .	3.8	6
38	Measurements of colliding shock wave and supersonic gas flow. Applied Physics Letters, 2010, 97, 191501.	3.3	5
39	A nonlinear plasma retroreflector for single pulse Compton backscattering. New Journal of Physics, 2015, 17, 023072.	2.9	5
40	Synchrotron radiation from a curved plasma channel laser wakefield accelerator. Physics of Plasmas, 2017, 24, 033119.	1.9	5
41	Pair Creation with Strong Laser Fields, Compton Scale X Rays, and Heavy Nuclei. Physical Review Letters, 2019, 122, 233201.	7.8	5
42	Nonlinear underwater propagation of picosecond ultraviolet laser beams. Optics Letters, 2020, 45, 4344.	3.3	5
43	Benchmarking background oriented schlieren against interferometric measurement using open source tools. Applied Optics, 2020, 59, 9553.	1.8	5
44	Laser accelerated ions from near critical gaseous targets. Proceedings of SPIE, 2015, , .	0.8	4
45	Lensing properties of rotational gas flow. Applied Optics, 2018, 57, 9392.	1.8	4
46	Simulation of accelerated electron spectra in laser wakefield accelerators. , 0, , .		3
47	Generation of high-energy electrons in a double gas jet and laser wakefield acceleration. IEEE Transactions on Plasma Science, 2005, 33, 735-738.	1.3	3
48	Electro-Optic and Terahertz Diagnostics. , 2010, , .		3
49	All optical electron injector using an intense ultrashort pulse laser and a solid wire target. Applied Physics B: Lasers and Optics, 2006, 83, 219-223.	2.2	2
50	Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons. , 2010, , .		2
51	Extending Electro-Optic Detection of Short Particle Beams Beyond the Transverse Phonon Resonance. , 2010, , .		2
52	Laser acceleration and injection of particles in optically shaped gas targets. Proceedings of SPIE, 2013, , .	0.8	2
53	Simulation of density channel guiding in capillary discharge experiments and laser wakefield accelerators. , 0, , .		1
54	Counter-Propagation of Electron and CO2 Laser Beams in a Plasma Channel. AIP Conference Proceedings, 2003, , .	0.4	1

DMITRI KAGANOVICH

#	Article	IF	CITATIONS
55	GUIDING OF HIGH LASER INTENSITIES IN LONG PLASMA CHANNELS. International Journal of Modern Physics B, 2007, 21, 361-371.	2.0	1
56	Electro-optic shocks from blowout laser wakefields. New Journal of Physics, 2010, 12, 045026.	2.9	1
57	Accelerated protons from near critical density gaseous targets. AIP Conference Proceedings, 2016, , .	0.4	1
58	Staging and laser acceleration of ions in underdense plasma. AIP Conference Proceedings, 2017, , .	0.4	1
59	Compression of Terawatt Long-Wavelength Laser Pulses Through Backward Raman Amplification. , 2018, , .		1
60	Vortex dynamics and applications to gaseous optical elements. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2104.	2.1	1
61	Modeling of a compact gas vortex lens for high-power lasers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1376.	2.1	1
62	Focusing of laser pulses using a plasma channel lens. , 0, , .		0
63	Optical injection in a laser wake field accelerator. , 0, , .		0
64	Laser plasma acceleration experiment at the naval research laboratory. , 2007, , .		0
65	Summary of Working Group 1: Laser Plasma Wakefield Accelerators. , 2009, , .		0
66	Second harmonic generation and off-axis electrons in the blowout regime of a Laser Wakefield Accelerator. , 2009, , .		0
67	Radiation signatures of laser driven wakes in plasmas. , 2011, , .		0
68	Electro-optic detection of ultrashort electron beams: moving beyond the transverse optical phonon resonance. , 2011, , .		0
69	High-resolution femtosecond measurements of underwater laser ionization and filamentation for electrical discharge guiding. , 2013, , .		0
70	Time-resolved spectroscopy and modeling of underwater laser ionization and filamentation for electrical discharge guiding. , 2014, , .		0
71	A nonlinear plasma retroreflector for single pulse Compton backscattering. AIP Conference Proceedings, 2016, , .	0.4	0
72	Prospects of coherent Compton backscattered X-rays from self-generated wiggler in a laser wakefield accelerator. AIP Conference Proceedings, 2016, , .	0.4	0

#	Article	IF	CITATIONS
73	Intense underwater laser propagation, ionization and heating for remote shaped plasma generation. , 2016, , .		0
74	Summary report of working group 7: Radiation and advanced concepts. AIP Conference Proceedings, 2017, , .	0.4	0
75	STUDY OF LASER COMPTON SCATTERING IN A PLASMA CHANNEL. , 2004, , .		0
76	Nonlinear Propagation of 100 ps, UV Laser Pulses in Water with Strong Stimulated Raman Stokes Coupling*. , 2017, , .		0
77	Nonlinear Propagation of 100 ps, UV Laser Pulses in Water with Strong Stimulated Raman Stokes Coupling. , 2017, , .		Ο