
Antonio Tricoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2828276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Si:WO ₃ Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Analytical Chemistry, 2010, 82, 3581-3587.	6.5	556
2	Semiconductor Gas Sensors: Dry Synthesis and Application. Angewandte Chemie - International Edition, 2010, 49, 7632-7659.	13.8	474
3	Breath acetone monitoring by portable Si:WO3 gas sensors. Analytica Chimica Acta, 2012, 738, 69-75.	5.4	256
4	Wearable and Miniaturized Sensor Technologies for Personalized and Preventive Medicine. Advanced Functional Materials, 2017, 27, 1605271.	14.9	247
5	Ultraporous Electronâ€Đepleted ZnO Nanoparticle Networks for Highly Sensitive Portable Visibleâ€Blind UV Photodetectors. Advanced Materials, 2015, 27, 4336-4343.	21.0	222
6	Ultra-Durable and Transparent Self-Cleaning Surfaces by Large-Scale Self-Assembly of Hierarchical Interpenetrated Polymer Networks. ACS Applied Materials & Interfaces, 2016, 8, 13615-13623.	8.0	179
7	Nitrate reduction to ammonium: from CuO defect engineering to waste NO _x -to-NH ₃ economic feasibility. Energy and Environmental Science, 2021, 14, 3588-3598.	30.8	161
8	Anti-Fogging Nanofibrous SiO ₂ and Nanostructured SiO ₂ â^'TiO ₂ Films Made by Rapid Flame Deposition and In Situ Annealing. Langmuir, 2009, 25, 12578-12584.	3.5	146
9	Stability of ZIF-8 nanopowders in bacterial culture media and its implication for antibacterial properties. Chemical Engineering Journal, 2021, 413, 127511.	12.7	137
10	Toward portable breath acetone analysis for diabetes detection. Journal of Breath Research, 2011, 5, 037109.	3.0	116
11	Metal–Organic Frameworks/Conducting Polymer Hydrogel Integrated Three-Dimensional Free-Standing Monoliths as Ultrahigh Loading Li–S Battery Electrodes. Nano Letters, 2019, 19, 4391-4399.	9.1	115
12	Mimosa Origami: A nanostructure-enabled directional self-organization regime of materials. Science Advances, 2016, 2, e1600417.	10.3	108
13	Engineering the Activity and Stability of MOFâ€Nanocomposites for Efficient Water Oxidation. Advanced Energy Materials, 2021, 11, 2003759.	19.5	108
14	Dispersed nanoelectrode devices. Nature Nanotechnology, 2010, 5, 54-60.	31.5	107
15	Minimal cross-sensitivity to humidity during ethanol detection by SnO ₂ –TiO ₂ solid solutions. Nanotechnology, 2009, 20, 315502.	2.6	106
16	Omnidirectional Self-Assembly of Transparent Superoleophobic Nanotextures. ACS Nano, 2017, 11, 587-596.	14.6	104
17	Nanostructured βâ€Bi ₂ O ₃ Fractals on Carbon Fibers for Highly Selective CO ₂ Electroreduction to Formate. Advanced Functional Materials, 2020, 30, 1906478.	14.9	104
18	Hybrid Organic–Inorganic Materials and Composites for Photoelectrochemical Water Splitting. ACS Energy Letters, 2020, 5, 1487-1497.	17.4	104

#	Article	IF	CITATIONS
19	Covalent Coupling-Stabilized Transition-Metal Sulfide/Carbon Nanotube Composites for Lithium/Sodium-Ion Batteries. ACS Nano, 2021, 15, 6735-6746.	14.6	95
20	Nearâ€Infrared Active Lead Chalcogenide Quantum Dots: Preparation, Postâ€6ynthesis Ligand Exchange, and Applications in Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 5202-5224.	13.8	86
21	Three-dimensional nano-heterojunction networks: a highly performing structure for fast visible-blind UV photodetectors. Nanoscale, 2017, 9, 2059-2067.	5.6	82
22	Superior Selfâ€Powered Roomâ€Temperature Chemical Sensing with Lightâ€Activated Inorganic Halides Perovskites. Small, 2018, 14, 1702571.	10.0	82
23	Janus Conductive/Insulating Microporous Ion-Sieving Membranes for Stable Li–S Batteries. ACS Nano, 2020, 14, 13852-13864.	14.6	74
24	Engineering of SnO ₂ –Graphene Oxide Nanoheterojunctions for Selective Room-Temperature Chemical Sensing and Optoelectronic Devices. ACS Applied Materials & Interfaces, 2020, 12, 39549-39560.	8.0	72
25	Highly porous TiO2 films for dye sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 14254.	6.7	63
26	Low-Voltage High-Performance UV Photodetectors: An Interplay between Grain Boundaries and Debye Length. ACS Applied Materials & Interfaces, 2017, 9, 2606-2615.	8.0	62
27	Nanoarchitechtonics of Visibleâ€Blind Ultraviolet Photodetector Materials: Critical Features and Nanoâ€Microfabrication. Advanced Optical Materials, 2019, 7, 1800580.	7.3	57
28	Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chemical Engineering Journal, 2022, 429, 132180.	12.7	56
29	NiO–ZnO Nanoheterojunction Networks for Roomâ€Temperature Volatile Organic Compounds Sensing. Advanced Optical Materials, 2018, 6, 1800677.	7.3	54
30	Understanding the Role of Vanadium Vacancies in BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials, 2021, 33, 3553-3565.	6.7	54
31	Room-temperature photodetectors and VOC sensors based on graphene oxide–ZnO nano-heterojunctions. Nanoscale, 2019, 11, 22932-22945.	5.6	51
32	Tunable Bandâ€ S elective UVâ€Photodetectors by 3D Selfâ€Assembly of Heterogeneous Nanoparticle Networks. Advanced Functional Materials, 2016, 26, 7359-7366.	14.9	50
33	Efficient ceria nanostructures for enhanced solar fuel production via high-temperature thermochemical redox cycles. Journal of Materials Chemistry A, 2016, 4, 9614-9624.	10.3	49
34	Miniaturized Bio-and Chemical-Sensors for Point-of-Care Monitoring of Chronic Kidney Diseases. Sensors, 2018, 18, 942.	3.8	49
35	An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. Sensors, 2021, 21, 2271.	3.8	48
36	Flame spray pyrolysis synthesis and aerosol deposition of nanoparticle films. AICHE Journal, 2012, 58, 3578-3588.	3.6	47

#	Article	IF	CITATIONS
37	Strain Engineering of Waveâ€like Nanofibers for Dynamically Switchable Adhesive/Repulsive Surfaces. Advanced Functional Materials, 2016, 26, 399-407.	14.9	47
38	Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds. Advanced Materials, 2018, 30, e1800931.	21.0	47
39	Self-assembly of Au nano-islands with tuneable organized disorder for highly sensitive SERS. Journal of Materials Chemistry C, 2019, 7, 6308-6316.	5.5	47
40	Self-assembly dynamics and accumulation mechanisms of ultra-fine nanoparticles. Nanoscale, 2015, 7, 9859-9867.	5.6	45
41	Robust Subâ€Monolayers of Co ₃ O ₄ Nanoâ€Islands: A Highly Transparent Morphology for Efficient Water Oxidation Catalysis. Advanced Energy Materials, 2016, 6, 1600697.	19.5	44
42	A Review of Metal―and Metalâ€Oxideâ€Based Heterogeneous Catalysts for Electroreduction of Carbon Dioxide. Advanced Sustainable Systems, 2018, 2, 1800028.	5.3	44
43	Unconventional direct synthesis of Ni ₃ N/Ni with N-vacancies for efficient and stable hydrogen evolution. Energy and Environmental Science, 2022, 15, 185-195.	30.8	44
44	Integrating Lowâ€Cost Earthâ€Abundant Coâ€Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting. Advanced Functional Materials, 2021, 31, 2008245.	14.9	43
45	Ultra-rapid synthesis of highly porous and robust hierarchical ZnO films for dye sensitized solar cells. Solar Energy, 2016, 136, 553-559.	6.1	42
46	Structural Engineering of Nanoâ€Grain Boundaries for Lowâ€Voltage UVâ€Photodetectors with Gigantic Photo†to Darkâ€Current Ratios. Advanced Optical Materials, 2016, 4, 1787-1795.	7.3	42
47	One-Step Synthesis of Porous Transparent Conductive Oxides by Hierarchical Self-Assembly of Aluminum-Doped ZnO Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 9589-9599.	8.0	41
48	Earth-abundant transition metal oxides with extraordinary reversible oxygen exchange capacity for efficient thermochemical synthesis of solar fuels. Nano Energy, 2018, 50, 347-358.	16.0	40
49	P-type Charge Transport and Selective Gas Sensing of All-Inorganic Perovskite Nanocrystals. , 2020, 2, 1368-1374.		40
50	Size-selected agglomerates of SnO2 nanoparticles as gas sensors. Journal of Applied Physics, 2009, 106, 084316.	2.5	39
51	Engineering of Chitosan-Hydroxyapatite-Magnetite Hierarchical Scaffolds for Guided Bone Growth. Materials, 2019, 12, 2321.	2.9	37
52	Highly efficient and durable solar thermal energy harvesting <i>via</i> scalable hierarchical coatings inspired by stony corals. Energy and Environmental Science, 2022, 15, 1893-1906.	30.8	37
53	Hierarchical amorphous nanofibers for transparent inherently super-hydrophilic coatings. Journal of Materials Chemistry A, 2014, 2, 15575-15581.	10.3	36
54	Superamphiphobic Bionic Proboscis for Contaminationâ€Free Manipulation of Nano and Core–Shell Droplets. Small, 2017, 13, 1603688.	10.0	34

#	Article	IF	CITATIONS
55	â€~It struck at the heart of who I thought I was': A metaâ€synthesis of the qualitative literature examining the experiences of people with multiple sclerosis. Health Expectations, 2020, 23, 1007-1027.	2.6	34
56	Flexible Transparent Hierarchical Nanomesh for Rose Petal‣ike Droplet Manipulation and Lossless Transfer. Advanced Materials Interfaces, 2015, 2, 1500071.	3.7	31
57	One‣tep Rapid and Scalable Flame Synthesis of Efficient WO ₃ Photoanodes for Water Splitting. ChemPlusChem, 2018, 83, 569-576.	2.8	31
58	Scalable Synthesis of Efficient Water Oxidation Catalysts: Insights into the Activity of Flameâ€Made Manganese Oxide Nanocrystals. ChemSusChem, 2015, 8, 4162-4171.	6.8	30
59	Non-Periodic Epsilon-Near-Zero Metamaterials at Visible Wavelengths for Efficient Non-Resonant Optical Sensing. Nano Letters, 2020, 20, 3970-3977.	9.1	30
60	Ultraporous superhydrophobic gas-permeable nano-layers by scalable solvent-free one-step self-assembly. Nanoscale, 2016, 8, 6085-6093.	5.6	29
61	Lattice Expansion in Optimally Doped Manganese Oxide: An Effective Structural Parameter for Enhanced Thermochemical Water Splitting. ACS Catalysis, 2019, 9, 9880-9890.	11.2	29
62	Peptide Programmed Hydrogels as Safe Sanctuary Microenvironments for Cell Transplantation. Advanced Functional Materials, 2020, 30, 1900390.	14.9	29
63	Surface Functionalization and Texturing of Optical Metasurfaces for Sensing Applications. Chemical Reviews, 2022, 122, 14990-15030.	47.7	29
64	Photoactivity and Stability Coâ€Enhancement: When Localized Plasmons Meet Oxygen Vacancies in MgO. Small, 2018, 14, e1803233.	10.0	28
65	Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatile ompound Sensing Performance. Advanced Materials, 2020, 32, e2002471.	21.0	27
66	Superior Selfâ€Charged and â€Powered Chemical Sensing with High Performance for NO ₂ Detection at Room Temperature. Advanced Optical Materials, 2020, 8, 1901863.	7.3	27
67	Flame aerosol deposition of Y ₂ O ₃ :Eu nanophosphor screens and their photoluminescent performance. Nanotechnology, 2010, 21, 225603.	2.6	26
68	Fabrication and cyto-compatibility of Fe3O4/SiO2/graphene–CdTe QDs/CS nanocomposites for drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 117, 466-472.	5.0	26
69	Multifunctional nanostructures of Au–Bi ₂ O ₃ fractals for CO ₂ reduction and optical sensing. Journal of Materials Chemistry A, 2020, 8, 11233-11245.	10.3	25
70	Scalable flame synthesis of SiO ₂ nanowires: dynamics of growth. Nanotechnology, 2010, 21, 465604.	2.6	24
71	Structural Stability and Performance of Noble Metal-Free SnO2-Based Gas Sensors. Biosensors, 2012, 2, 221-233.	4.7	23
72	Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration. Scientific Reports, 2016, 6, 24305.	3.3	23

5

#	Article	IF	CITATIONS
73	Zinc Titanate Nanoarrays with Superior Optoelectrochemical Properties for Chemical Sensing. ACS Applied Materials & Interfaces, 2019, 11, 29255-29267.	8.0	23
74	Light-activated inorganic CsPbBr ₂ 1 perovskite for room-temperature self-powered chemical sensing. Physical Chemistry Chemical Physics, 2019, 21, 24187-24193.	2.8	23
75	Highâ€Temperature Oneâ€Step Synthesis of Efficient Nanostructured Bismuth Vanadate Photoanodes for Water Oxidation. Energy Technology, 2019, 7, 1801052.	3.8	23
76	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie - International Edition, 2021, 60, 15821-15826.	13.8	23
77	Optimally Hierarchical Nanostructured Hydroxyapatite Coatings for Superior Prosthesis Biointegration. ACS Applied Materials & Interfaces, 2018, 10, 24840-24849.	8.0	20
78	Direct Observation of Oxygen Evolution and Surface Restructuring on Mn ₂ O ₃ Nanocatalysts Using <i>In Situ</i> and <i>Ex Situ</i> Transmission Electron Microscopy. Nano Letters, 2021, 21, 7012-7020.	9.1	19
79	Continuous Growth Synthesis of Zinc Oxide Nanocrystals with Tunable Size and Doping. Chemistry of Materials, 2019, 31, 9604-9613.	6.7	18
80	Tuning the selectivity of highly sensitive chemiresistive nanoparticle networks by encapsulation with metal–organic frameworks. Journal of Materials Chemistry C, 2021, 9, 17331-17340.	5.5	17
81	Highâ€Temperature Largeâ€Scale Selfâ€Assembly of Highly Faceted Monocrystalline Au Metasurfaces. Advanced Functional Materials, 2019, 29, 1806387.	14.9	16
82	Semiconductor Nanowire Arrays for Highâ€Performance Miniaturized Chemical Sensing. Advanced Functional Materials, 2022, 32, 2107596.	14.9	16
83	Cassie-Levitated Droplets for Distortion-Free Low-Energy Solid–Liquid Interactions. ACS Applied Materials & Interfaces, 2018, 10, 13999-14007.	8.0	14
84	Dualâ€ion Flux Management for Stable High Areal Capacity Lithium–Sulfur Batteries. Advanced Energy Materials, 2022, 12, .	19.5	14
85	Nanoscale TiO ₂ Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 33130-33140.	8.0	13
86	Dynamically Gasâ€Phase Switchable Super(de)wetting States by Reversible Amphiphilic Functionalization: A Powerful Approach for Smart Fluid Gating Membranes. Advanced Functional Materials, 2018, 28, 1704423.	14.9	12
87	Nanomaterials-based UV photodetectors. , 2019, , 123-149.		12
88	Self-assembly of noble metal-free graphene–copper plasmonic metasurfaces. Journal of Materials Chemistry C, 2020, 8, 11896-11905.	5.5	12
89	From Stochastic Selfâ€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€ŧoâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	14.9	12
90	Flame-made ultra-porous TiO ₂ layers for perovskite solar cells. Nanotechnology, 2016, 27, 505403.	2.6	11

#	Article	IF	CITATIONS
91	Surfaceâ€Structured Cocatalyst Foils Unraveling a Pathway to Highâ€Performance Solar Water Splitting. Advanced Energy Materials, 2022, 12, 2102752.	19.5	11
92	When Less Gold is More: Selective Attomolar Biosensing at the Nanoscale. Advanced Functional Materials, 2022, 32, .	14.9	11
93	Revealing Atomic Structure and Oxidation States of Dopants in Charge-Ordered Nanoparticles for Migration-Promoted Oxygen-Exchange Capacity. Chemistry of Materials, 2019, 31, 5769-5777.	6.7	10
94	Durable Electrooxidation of Acidic Water Catalysed by a Cobaltâ€Bismuthâ€based Oxide Composite: An Unexpected Role of the Fâ€doped SnO ₂ Substrate. ChemCatChem, 2022, 14, .	3.7	9
95	Resonant Dielectric Metagratings for Response Intensified Optical Sensing. Advanced Functional Materials, 2022, 32, 2103143.	14.9	8
96	Using UV-Responsive Nanoparticles to Provide <i>In Situ</i> Control of Growth Factor Delivery and a More Constant Release Profile from a Hydrogel Environment. ACS Applied Materials & Interfaces, 2022, 14, 12068-12076.	8.0	7
97	Nanoparticle-based biomedical sensors. Frontiers of Nanoscience, 2020, 15, 247-269.	0.6	6
98	Engineering Fractal Photonic Metamaterials by Stochastic Selfâ€Assembly of Nanoparticles. Advanced Photonics Research, 2021, 2, 2100020.	3.6	6
99	Intrinsic Catalytic Activity for the Alkaline Hydrogen Evolution of Layer-Expanded MoS ₂ Functionalized with Nanoscale Ni and Co Sulfides. ACS Sustainable Chemistry and Engineering, 2022, 10, 7117-7133.	6.7	6
100	High Performance Flame-Made Ultraporous ZnO-Based QCM Sensor For Acetaldehyde. , 2019, , .		5
101	Paperâ€Like Writable Nanoparticle Network Sheets for Maskâ€Less MOF Patterning. Advanced Functional Materials, 2022, 32, .	14.9	5
102	Nahinfrarotaktive Bleichalkogenidâ€Quantenpunkte: Herstellung, postsynthetischer Ligandenaustausch und Anwendungen in Solarzellen. Angewandte Chemie, 2019, 131, 5256-5279.	2.0	4
103	Personalizing Medicine and Technologies to Address the Experiences and Needs of People with Multiple Sclerosis. Journal of Personalized Medicine, 2021, 11, 791.	2.5	4
104	Shielding Surfaces from Viruses and Bacteria with a Multiscale Coating. Advanced Science, 2022, 9, .	11.2	4
105	Si:WO. , 2010, , .		3
106	Oxygen Evolution Reaction: Engineering the Activity and Stability of MOFâ€Nanocomposites for Efficient Water Oxidation (Adv. Energy Mater. 16/2021). Advanced Energy Materials, 2021, 11, 2170063.	19.5	3
107	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie, 2021, 133, 15955-15960.	2.0	3
108	Self-adhesive flexible patches of oxide heterojunctions with tailored band alignments for electrocatalytic H ₂ O ₂ generation. Journal of Materials Chemistry A, 2021, 9, 26727-26740.	10.3	3

#	Article	IF	CITATIONS
109	Photonic Metamaterials: Photonic Fractal Metamaterials: A Metal–Semiconductor Platform with Enhanced Volatile ompound Sensing Performance (Adv. Mater. 50/2020). Advanced Materials, 2020, 32, 2070376.	21.0	2
110	Advances in Wearable Sensing Technologies and Their Impact for Personalized and Preventive Medicine. , 0, , .		2
111	Optoelectronics properties of tungsten oxide nanoparticle networks deposited by flame spray pyrolysis. MRS Advances, 2018, 3, 3391-3396.	0.9	1
112	Effect of specific surface area on syngas production performance of pure ceria in high-temperature thermochemical redox cycling coupled to methane partial oxidation. RSC Advances, 2020, 10, 36617-36626.	3.6	1
113	Disclosing the Sensitivity and Selectivity of Metal Oxide/Graphene Oxide-Based Chemoresistors towards VOCs. Engineering Proceedings, 2021, 6, .	0.4	1
114	Aerosol synthesis of chemoresistive gas sensors: Materials, structures and performances. , 2010, , .		0
115	Dispersed Nanoelectrodes for High Performance Gas Sensors. Materials Research Society Symposia Proceedings, 2011, 1292, 93.	0.1	0
116	FITC-Functionalized TiO2 Nanoparticles for Simultaneous Neuron Imaging and in Cell Photocatalysis. Materials Research Society Symposia Proceedings, 2014, 1694, 13.	0.1	0
117	Disposable micro stir bars by photodegradable organic encapsulation of hematite–magnetite nanoparticles. RSC Advances, 2016, 6, 33843-33850.	3.6	0
118	Ultrasensitive room-temperature chemical sensors by Ag-decorated ultraporous ZnO nanoparticle networks. , 2019, , .		0
119	Flame assisted synthesis of nanostructures for device applications. Advances in Physics: X, 2022, 7, .	4.1	0