Luc Dupuis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2827106/publications.pdf

Version: 2024-02-01

		76326	82547
79	5,714	40	72
papers	citations	h-index	g-index
87	87	87	6035
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Linking neuroinflammation to motor neuron degeneration in ALS: The critical role of CXCL13/CXCR5. EBioMedicine, 2021, 63, 103149.	6.1	3
2	Serotonin and the 5-HT2B Receptor in Amyotrophic Lateral Sclerosis. Receptors, 2021, , 367-386.	0.2	0
3	Hypothalamus and weight loss in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 327-338.	1.8	7
4	Disruption of orbitofrontal-hypothalamic projections in a murine ALS model and in human patients. Translational Neurodegeneration, 2021, 10, 17.	8.0	15
5	Cytoplasmic FUS triggers early behavioral alterations linked to cortical neuronal hyperactivity and inhibitory synaptic defects. Nature Communications, 2021, 12, 3028.	12.8	28
6	Atxn2-CAG100-Knockln mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiology of Disease, 2021, 152, 105289.	4.4	24
7	Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nature Communications, 2021, 12, 3027.	12.8	39
8	Dysregulation of energy homeostasis in amyotrophic lateral sclerosis. Current Opinion in Neurology, 2021, 34, 773-780.	3.6	11
9	Wild-type FUS corrects ALS-like disease induced by cytoplasmic mutant FUS through autoregulation. Molecular Neurodegeneration, 2021, 16, 61.	10.8	9
10	Evaluation of a 5-HT2B receptor agonist in a murine model of amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 23582.	3.3	5
11	Effect of Highâ€Caloric Nutrition on Survival in Amyotrophic Lateral Sclerosis. Annals of Neurology, 2020, 87, 206-216.	5.3	105
12	Association of Insulin-like Growth Factor 1 Concentrations with Risk for and Prognosis of Amyotrophic Lateral Sclerosis – Results from the ALS Registry Swabia. Scientific Reports, 2020, 10, 736.	3.3	19
13	Role of RNA Binding Proteins with prion-like domains in muscle and neuromuscular diseases. Cell Stress, 2020, 4, 76-91.	3.2	35
14	Multiplexed chemogenetics in astrocytes and motoneurons restore blood–spinal cord barrier in ALS. Life Science Alliance, 2020, 3, e201900571.	2.8	18
15	Morphological MRI investigations of the hypothalamus in 232 individuals with Parkinson's disease. Movement Disorders, 2019, 34, 1566-1570.	3.9	9
16	FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis. Nature Neuroscience, 2019, 22, 1793-1805.	14.8	81
17	The dark side of HDAC inhibition in ALS. EBioMedicine, 2019, 41, 38-39.	6.1	10
18	Association of Serum Retinol-Binding Protein 4 Concentration With Risk for and Prognosis of Amyotrophic Lateral Sclerosis. JAMA Neurology, 2018, 75, 600.	9.0	24

#	Article	IF	CITATIONS
19	Reversible induction of TDP-43 granules in cortical neurons after traumatic injury. Experimental Neurology, 2018, 299, 15-25.	4.1	41
20	Thermoregulatory disorders in Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 761-775.	1.8	6
21	Thermoregulation in amyotrophic lateral sclerosis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 749-760.	1.8	7
22	Unmasking the skiptic task of TDPâ€43. EMBO Journal, 2018, 37, .	7.8	3
23	Hypertonic Stress Causes Cytoplasmic Translocation of Neuronal, but Not Astrocytic, FUS due to Impaired Transportin Function. Cell Reports, 2018, 24, 987-1000.e7.	6.4	49
24	Hypothalamic Alterations in Neurodegenerative Diseases and Their Relation to Abnormal Energy Metabolism. Frontiers in Molecular Neuroscience, 2018, 11, 2.	2.9	113
25	Paradox of amyotrophic lateral sclerosis and energy metabolism. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 1013-1014.	1.9	20
26	Motor neuron intrinsic and extrinsic mechanisms contribute to the pathogenesis of FUS-associated amyotrophic lateral sclerosis. Acta Neuropathologica, 2017, 133, 887-906.	7.7	111
27	Hypothalamic atrophy is related to body mass index and age at onset in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 1033-1041.	1.9	113
28	Life course body mass index and risk and prognosis of amyotrophic lateral sclerosis: results from the ALS registry Swabia. European Journal of Epidemiology, 2017, 32, 901-908.	5.7	82
29	Degeneration of serotonin neurons triggers spasticity in amyotrophic lateral sclerosis. Annals of Neurology, 2017, 82, 444-456.	5. 3	30
30	Adipokines, C-reactive protein and Amyotrophic Lateral Sclerosis – results from a population- based ALS registry in Germany. Scientific Reports, 2017, 7, 4374.	3.3	45
31	ALS-causing mutations differentially affect PGC- \hat{l} ± expression and function in the brain vs. peripheral tissues. Neurobiology of Disease, 2017, 97, 36-45.	4.4	35
32	Toxic gain of function from mutant <scp>FUS</scp> protein is crucial to trigger cell autonomous motor neuron loss. EMBO Journal, 2016, 35, 1077-1097.	7.8	187
33	Body fat distribution in Parkinson's disease: An MRI-based body fat quantification study. Parkinsonism and Related Disorders, 2016, 33, 84-89.	2.2	18
34	The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis. Brain Pathology, 2016, 26, 227-236.	4.1	133
35	Alterations in the hypothalamic melanocortin pathway in amyotrophic lateral sclerosis. Brain, 2016, 139, 1106-1122.	7.6	80
36	Serotonin 2B receptor slows disease progression and prevents degeneration of spinal cord mononuclear phagocytes in amyotrophic lateral sclerosis. Acta Neuropathologica, 2016, 131, 465-480.	7.7	41

#	Article	IF	Citations
37	Adipose Tissue Distribution in Patients withÂAlzheimer's Disease: A Whole Body MRI Case-Control Study. Journal of Alzheimer's Disease, 2015, 48, 825-832.	2.6	18
38	Percutaneous endoscopic gastrostomy in amyotrophic lateral sclerosis: a prospective observational study. Journal of Neurology, 2015, 262, 849-858.	3.6	80
39	Low dietary protein content alleviates motor symptoms in mice with mutant dynactin/dynein-mediated neurodegeneration. Human Molecular Genetics, 2015, 24, 2228-2240.	2.9	22
40	A plural role for lipids in motor neuron diseases: energy, signaling and structure. Frontiers in Cellular Neuroscience, 2014, 8, 25.	3.7	114
41	Neuroprotective Strategies in Amyotrophic Lateral Sclerosis: Modulation of Neurotransmittory and Neurotrophic Input to Motor Neurons. , 2014, , 1417-1434.		0
42	Mitochondrial quality control in neurodegenerative diseases. Biochimie, 2014, 100, 177-183.	2.6	44
43	Full-length PGC- $1\hat{i}\pm$ salvages the phenotype of a mouse model of human neuropathy through mitochondrial proliferation. Human Molecular Genetics, 2013, 22, 5096-5106.	2.9	3
44	Mechanisms, models and biomarkers in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2013, 14, 19-32.	1.7	135
45	Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age. Neurobiology of Disease, 2013, 58, 220-230.	4.4	40
46	Degeneration of serotonergic neurons in amyotrophic lateral sclerosis: a link to spasticity. Brain, 2013, 136, 483-493.	7.6	72
47	VAPB/ALS8 MSP Ligands Regulate Striated Muscle Energy Metabolism Critical for Adult Survival in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003738.	3.5	35
48	PGC- $1\hat{A}$ is a male-specific disease modifier of human and experimental amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 3477-3484.	2.9	74
49	Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis. Human Molecular Genetics, 2013, 22, 2350-2360.	2.9	7 5
50	Adipose Tissue Distribution Predicts Survival in Amyotrophic Lateral Sclerosis. PLoS ONE, 2013, 8, e67783.	2.5	74
51	Systemic Down-Regulation of Delta-9 Desaturase Promotes Muscle Oxidative Metabolism and Accelerates Muscle Function Recovery following Nerve Injury. PLoS ONE, 2013, 8, e64525.	2.5	27
52	Progranulin Bridges Energy Homeostasis and Fronto-Temporal Dementia. Cell Metabolism, 2012, 15, 269-270.	16.2	4
53	A Randomized, Double Blind, Placebo-Controlled Trial of Pioglitazone in Combination with Riluzole in Amyotrophic Lateral Sclerosis. PLoS ONE, 2012, 7, e37885.	2.5	125
54	Mutations in cytoplasmic dynein lead to a Huntington's disease-like defect in energy metabolism of brown and white adipose tissues. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 59-69.	3.8	20

#	Article	IF	Citations
55	Cytoplasmic dynein in neurodegeneration. , 2011, 130, 348-363.		92
56	Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurology, The, 2011, 10, 75-82.	10.2	457
57	A mutation in the dynein heavy chain gene compensates for energy deficit of mutant SOD1 mice and increases potentially neuroprotective IGF-1. Molecular Neurodegeneration, 2011, 6, 26.	10.8	15
58	Platelet Serotonin Level Predicts Survival in Amyotrophic Lateral Sclerosis. PLoS ONE, 2010, 5, e13346.	2.5	49
59	A point mutation in the dynein heavy chain gene leads to striatal atrophy and compromises neurite outgrowth of striatal neurons. Human Molecular Genetics, 2010, 19, 4385-4398.	2.9	55
60	Impaired glucose tolerance in patients with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2010, 11, 166-171.	2.1	139
61	Skeletal Muscle in Motor Neuron Diseases: Therapeutic Target and Delivery Route for Potential Treatments. Current Drug Targets, 2010, 11, 1250-1261.	2.1	41
62	Muscle Mitochondrial Uncoupling Dismantles Neuromuscular Junction and Triggers Distal Degeneration of Motor Neurons. PLoS ONE, 2009, 4, e5390.	2.5	176
63	Neuromuscular junction destruction during amyotrophic lateral sclerosis: insights from transgenic models. Current Opinion in Pharmacology, 2009, 9, 341-346.	3.5	172
64	Mice with a mutation in the dynein heavy chain 1 gene display sensory neuropathy but lack motor neuron disease. Experimental Neurology, 2009, 215, 146-152.	4.1	61
65	Oxidative stress sensitivity in ALS muscle cells. Experimental Neurology, 2009, 220, 219-223.	4.1	9
66	Gene profiling of skeletal muscle in an amyotrophic lateral sclerosis mouse model. Physiological Genomics, 2008, 32, 207-218.	2.3	115
67	Sodium Valproate Exerts Neuroprotective Effects <i>In Vivo</i> through CREB-Binding Protein-Dependent Mechanisms But Does Not Improve Survival in an Amyotrophic Lateral Sclerosis Mouse Model. Journal of Neuroscience, 2007, 27, 5535-5545.	3 . 6	196
68	Increased peripheral lipid clearance in an animal model of amyotrophic lateral sclerosis. Journal of Lipid Research, 2007, 48, 1571-1580.	4.2	106
69	Muscle Nogo-a expression is a prognostic marker in lower motor neuron syndromes. Annals of Neurology, 2007, 62, 15-20.	5. 3	82
70	Amyotrophic lateral sclerosis: all roads lead to Rome. Journal of Neurochemistry, 2007, 101, 1153-1160.	3.9	71
71	The neurite outgrowth inhibitor Nogoâ€A promotes denervation in an amyotrophic lateral sclerosis model. EMBO Reports, 2006, 7, 1162-1167.	4.5	135
72	Nogo expression in muscle correlates with amyotrophic lateral sclerosis severity. Annals of Neurology, 2005, 57, 553-556.	5. 3	113

Luc Dupuis

#	Article	IF	CITATION
73	Nogo-A, -B, and -C Are Found on the Cell Surface and Interact Together in Many Different Cell Types. Journal of Biological Chemistry, 2005, 280, 12494-12502.	3.4	134
74	The metabolic hypothesis in amyotrophic lateral sclerosis: insights from mutant Cu/Zn-superoxide dismutase mice. Biomedicine and Pharmacotherapy, 2005, 59, 190-196.	5. 6	33
75	Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: Benefit of a high-energy diet in a transgenic mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11159-11164.	7.1	479
76	Mitochondria in Amyotrophic Lateral Sclerosis: A Trigger and a Target. Neurodegenerative Diseases, 2004, 1, 245-254.	1.4	133
77	Upâ€regulation of mitochondrial uncoupling protein 3 reveals an early muscular metabolic defect in amyotrophic lateral sclerosis. FASEB Journal, 2003, 17, 1-19.	0.5	117
78	Nogo Provides a Molecular Marker for Diagnosis of Amyotrophic Lateral Sclerosis. Neurobiology of Disease, 2002, 10, 358-365.	4.4	152
79	Differential Screening of Mutated SOD1 Transgenic Mice Reveals Early Up-Regulation of a Fast Axonal Transport Component in Spinal Cord Motor Neurons. Neurobiology of Disease, 2000, 7, 274-285.	4.4	53