Liquan Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/28271/publications.pdf

Version: 2024-02-01

2962 3782 37,203 287 96 185 citations h-index g-index papers 290 290 290 26402 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Localizedâ€domains staging structure and evolution in lithiated graphite. , 2023, 5, .		21
2	Modification of NASICON Electrolyte and Its Application in Real Na-Ion Cells. Engineering, 2022, 8, 170-180.	3.2	12
3	High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendriteâ€Free Liquid Lithium Anode. Advanced Functional Materials, 2022, 32, 2105776.	7.8	40
4	Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Materials, 2022, 45, 821-827.	9.5	21
5	New insights into the mechanism of cation migration induced by cation–anion dynamic coupling in superionic conductors. Journal of Materials Chemistry A, 2022, 10, 3093-3101.	5.2	11
6	All-in-One Ionic–Electronic Dual-Carrier Conducting Framework Thickening All-Solid-State Electrode. ACS Energy Letters, 2022, 7, 766-772.	8.8	7
7	Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. Journal of Materials Chemistry A, 2022, 10, 4517-4532.	5.2	75
8	Large Scale One-Pot Synthesis of Monodispersed Na ₃ (VOPO ₄) ₂ F Cathode for Na-Ion Batteries. Energy Material Advances, 2022, 2022, .	4.7	16
9	Topologically protected oxygen redox in a layered manganese oxide cathode for sustainable batteries. Nature Sustainability, 2022, 5, 214-224.	11.5	44
10	lonic Conductivity of LiSiON and the Effect of Amorphization/Heterovalent Doping on Li+ Diffusion. Inorganics, 2022, 10, 45.	1.2	2
11	Anomalous Thermal Decomposition Behavior of Polycrystalline LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂ in PEOâ€Based Solid Polymer Electrolyte. Advanced Functional Materials, 2022, 32, .	7.8	19
12	Configurationâ€dependent anionic redox in cathode materials. , 2022, 1, .		28
13	Solid-state lithium batteries: Safety and prospects. EScience, 2022, 2, 138-163.	25.0	190
14	Raising the Intrinsic Safety of Layered Oxide Cathodes by Surface Reâ€Lithiation with LLZTO Garnetâ€Type Solid Electrolytes. Advanced Materials, 2022, 34, e2200655.	11.1	30
15	A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. Advanced Materials, 2022, 34, e2110323.	11.1	46
16	Improving thermal stability of sulfide solid electrolytes: An intrinsic theoretical paradigm. InformaÄnÃ-Materiály, 2022, 4, .	8.5	33
17	Waterâ€Stable Sulfide Solid Electrolyte Membranes Directly Applicable in Allâ€Solidâ€State Batteries Enabled by Superhydrophobic Li ⁺ â€Conducting Protection Layer. Advanced Energy Materials, 2022, 12, .	10.2	62
18	Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18353-18359.	4.0	21

#	Article	IF	Citations
19	Enhancing ionic conductivity in solid electrolyte by relocating diffusion ions to under-coordination sites. Science Advances, 2022, 8, eabj7698.	4.7	37
20	Electrolyte and current collector designs for stable lithium metal anodes. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 953-964.	2.4	12
21	Interfacial engineering to achieve an energy density of over 200 Wh kgâ^'1 in sodium batteries. Nature Energy, 2022, 7, 511-519.	19.8	130
22	Interfacial and cycle stability of sulfide all-solid-state batteries with Ni-rich layered oxide cathodes. Nano Energy, 2022, 100, 107528.	8.2	38
23	Longâ€Life Lithiumâ€Metal Allâ€Solidâ€State Batteries and Stable Li Plating Enabled by InÂSitu Formation of Li ₃ PS ₄ in the SEI Layer. Advanced Materials, 2022, 34, .	11.1	66
24	The Role of Electron Localization in Covalency and Electrochemical Properties of Lithiumâ€ion Battery Cathode Materials. Advanced Functional Materials, 2021, 31, 2001633.	7.8	21
25	Na10SnSb2S12: A nanosized air-stable solid electrolyte for all-solid-state sodium batteries. Chemical Engineering Journal, 2021, 420, 127692.	6.6	36
26	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	10.2	119
27	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 7770-7776.	7.2	58
28	The Formation/Decomposition Equilibrium of LiH and its Contribution on Anode Failure in Practical Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 7849-7855.	1.6	18
29	Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 8370-8377.	1.6	2
30	Liâ€Rich Li ₂ [Ni _{0.8} Co _{0.1} Mn _{0.1}]O ₂ for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296.	7.2	71
31	Synergy Effect of Trimethyl Borate on Protecting High-Voltage Cathode Materials in Dual-Additive Electrolytes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 21459-21466.	4.0	21
32	Additiveâ€Free Selfâ€Presodiation Strategy for Highâ€Performance Naâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2101475.	7.8	36
33	Competitive Solvation Enhanced Stability of Lithium Metal Anode in Dual-Salt Electrolyte. Nano Letters, 2021, 21, 3310-3317.	4.5	95
34	Uncovering LiH Triggered Thermal Runaway Mechanism of a Highâ€Energy LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ /Graphite Pouch Cell. Advanced Science, 2021, 8, e2100676.	5.6	48
35	Dense Allâ€Electrochemâ€Active Electrodes for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2021, 33, e2008723.	11.1	26
36	Hunting Sodium Dendrites in NASICON-Based Solid-State Electrolytes. Energy Material Advances, 2021, 2021, .	4.7	57

#	Article	IF	Citations
37	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie - International Edition, 2021, 60, 17547-17555.	7.2	72
38	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie, 2021, 133, 16623-16627.	1.6	0
39	Ultralight Electrolyte for Highâ€Energy Lithium–Sulfur Pouch Cells. Angewandte Chemie, 2021, 133, 17688-17696.	1.6	13
40	Progress in thermal stability of <scp>allâ€solidâ€stateâ€Liâ€ionâ€batteries</scp> . InformaÄnÃ-Materiály, 2021, 827-853.	3 _{8.5}	126
41	Amorphous Redox-Rich Polysulfides for Mg Cathodes. Jacs Au, 2021, 1, 1266-1274.	3.6	14
42	Anionic Effect on Enhancing the Stability of a Solid Electrolyte Interphase Film for Lithium Deposition on Graphite. Nano Letters, 2021, 21, 5316-5323.	4.5	46
43	Leakageâ€Proof Electrolyte Chemistry for a Highâ€Performance Lithium–Sulfur Battery. Angewandte Chemie - International Edition, 2021, 60, 16487-16491.	7.2	29
44	Superior Allâ€Solidâ€State Batteries Enabled by a Gasâ€Phaseâ€Synthesized Sulfide Electrolyte with Ultrahigh Moisture Stability and Ionic Conductivity. Advanced Materials, 2021, 33, e2100921.	11.1	110
45	Disordered carbon anodes for Na-ion batteries—quo vadis?. Science China Chemistry, 2021, 64, 1679-1692.	4.2	44
46	Reaction Mechanisms of Ta-Substituted Cubic Li ₇ La ₃ Zr ₂ O ₁₂ with Solvents During Storage. ACS Applied Materials & During Storage.	4.0	14
47	Lowâ€Density Fluorinated Silane Solvent Enhancing Deep Cycle Lithium–Sulfur Batteries' Lifetime. Advanced Materials, 2021, 33, e2102034.	11.1	39
48	Amorphous anion-rich titanium polysulfides for aluminum-ion batteries. Science Advances, 2021, 7, .	4.7	63
49	Electronic Conductive Inorganic Cathodes Promising Highâ€Energy Organic Batteries. Advanced Materials, 2021, 33, e2005781.	11.1	12
50	Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime. Nature Chemistry, 2021, 13, 1061-1069.	6.6	57
51	5V-class sulfurized spinel cathode stable in sulfide all-solid-state batteries. Nano Energy, 2021, 90, 106589.	8.2	53
52	Phase Diagram Determined Lithium Plating/Stripping Behaviors on Lithiophilic Substrates. ACS Energy Letters, 2021, 6, 4118-4126.	8.8	65
53	Interfacial chemistry of \hat{I}^3 -glutamic acid derived block polymer binder directing the interfacial compatibility of high voltage LiNi0.5Mn1.5O4 electrode. Science China Chemistry, 2021, 64, 92-100.	4.2	8
54	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 264-269.	7.2	335

#	Article	IF	CITATIONS
55	Flexible Na batteries. InformaÄnÃ-Materiály, 2020, 2, 126-138.	8.5	108
56	Highâ€Entropy Layered Oxide Cathodes for Sodiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 270-275.	1.6	15
57	lodine Vapor Transport-Triggered Preferential Growth of Chevrel Mo ₆ S ₈ Nanosheets for Advanced Multivalent Batteries. ACS Nano, 2020, 14, 1102-1110.	7.3	72
58	Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces. Chemical Reviews, 2020, 120, 6820-6877.	23.0	891
59	Highâ€Voltage Aqueous Naâ€Ion Battery Enabled by Inertâ€Cationâ€Assisted Waterâ€Inâ€Salt Electrolyte. Advan Materials, 2020, 32, e1904427.	ced 11.1	221
60	High Polymerization Conversion and Stable High-Voltage Chemistry Underpinning an In Situ Formed Solid Electrolyte. Chemistry of Materials, 2020, 32, 9167-9175.	3.2	81
61	In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries. Nature Communications, 2020, 11, 5889.	5.8	145
62	Stacking Faults Hinder Lithium Insertion in Li ₂ RuO ₃ . Advanced Energy Materials, 2020, 10, 2002631.	10.2	22
63	Efficient potential-tuning strategy through p-type doping for designing cathodes with ultrahigh energy density. National Science Review, 2020, 7, 1768-1775.	4.6	43
64	Interface Concentratedâ€Confinement Suppressing Cathode Dissolution in Waterâ€inâ€Salt Electrolyte. Advanced Energy Materials, 2020, 10, 2000665.	10.2	70
65	Joint Cationic and Anionic Redox Chemistry for Advanced Mg Batteries. Nano Letters, 2020, 20, 6852-6858.	4.5	25
66	Simplifying and accelerating kinetics enabling fast-charge Al batteries. Journal of Materials Chemistry A, 2020, 8, 23834-23843.	5.2	12
67	Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370, 708-711.	6.0	616
68	Realizing High Volumetric Lithium Storage by Compact and Mechanically Stable Anode Designs. ACS Energy Letters, 2020, 5, 1986-1995.	8.8	72
69	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
70	Realizing long-term cycling stability and superior rate performance of 4.5ÂV–LiCoO2 by aluminum doped zinc oxide coating achieved by a simple wet-mixing method. Journal of Power Sources, 2020, 470, 228423.	4.0	57
71	Europium-Doped Ceria Nanowires as Anode for Solid Oxide Fuel Cells. Frontiers in Chemistry, 2020, 8, 348.	1.8	11
72	Ultralow-Concentration Electrolyte for Na-Ion Batteries. ACS Energy Letters, 2020, 5, 1156-1158.	8.8	120

#	Article	IF	Citations
73	Constructing Naâ€lon Cathodes via Alkaliâ€Site Substitution. Advanced Functional Materials, 2020, 30, 1910840.	7.8	28
74	Nonflammable Nitrile Deep Eutectic Electrolyte Enables High-Voltage Lithium Metal Batteries. Chemistry of Materials, 2020, 32, 3405-3413.	3.2	145
75	Revealing High Na-Content P2-Type Layered Oxides as Advanced Sodium-Ion Cathodes. Journal of the American Chemical Society, 2020, 142, 5742-5750.	6.6	206
76	Uncovering the Potential of M1â€Siteâ€Activated NASICON Cathodes for Znâ€Ion Batteries. Advanced Materials, 2020, 32, e1907526.	11.1	103
77	Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Letters, 2020, 5, 826-832.	8.8	192
78	High-throughput computational discovery of K ₂ CdO ₂ as an ion conductor for solid-state potassium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 5157-5162.	5.2	23
79	Eliminating Transition Metal Migration and Anionic Redox to Understand Voltage Hysteresis of Lithiumâ€Rich Layered Oxides. Advanced Energy Materials, 2020, 10, 1903634.	10.2	45
80	Enabling Stable Cycling of 4.2 V Highâ€Voltage Allâ€Solidâ€State Batteries with PEOâ€Based Solid Electrolyte. Advanced Functional Materials, 2020, 30, 1909392.	7.8	204
81	Mobile Ions in Composite Solids. Chemical Reviews, 2020, 120, 4169-4221.	23.0	193
82	Insights into Lithium and Sodium Storage in Porous Carbon. Nano Letters, 2020, 20, 3836-3843.	4.5	86
83	A stabilized PEO-based solid electrolyte <i>via</i> a facile interfacial engineering method for a high voltage solid-state lithium metal battery. Chemical Communications, 2020, 56, 5633-5636.	2.2	43
84	Practical evaluation of energy densities for sulfide solid-state batteries. ETransportation, 2019, 1, 100010.	6.8	114
85	Li–Ti Cation Mixing Enhanced Structural and Performance Stability of Liâ€Rich Layered Oxide. Advanced Energy Materials, 2019, 9, 1901530.	10.2	76
86	Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chemistry of Materials, 2019, 31, 6033-6065.	3.2	164
87	Water-in-Salt Electrolyte Promotes High-Capacity FeFe(CN) < sub > 6 < /sub > Cathode for Aqueous Al-Ion Battery. ACS Applied Materials & amp; Interfaces, 2019, 11, 41356-41362.	4.0	93
88	Revealing an Interconnected Interfacial Layer in Solidâ€State Polymer Sodium Batteries. Angewandte Chemie, 2019, 131, 17182-17188.	1.6	7
89	Correlated Migration Invokes Higher Na ⁺ â€lon Conductivity in NaSICONâ€Type Solid Electrolytes. Advanced Energy Materials, 2019, 9, 1902373.	10.2	162
90	Revealing an Interconnected Interfacial Layer in Solidâ€State Polymer Sodium Batteries. Angewandte Chemie - International Edition, 2019, 58, 17026-17032.	7.2	48

#	Article	IF	CITATIONS
91	Li-free Cathode Materials for High Energy Density Lithium Batteries. Joule, 2019, 3, 2086-2102.	11.7	239
92	Atomic Scale Recognition of Structure in the Intercalation of Sodium by Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 2120-2121.	0.2	0
93	Tuning the Closed Pore Structure of Hard Carbons with the Highest Na Storage Capacity. ACS Energy Letters, 2019, 4, 2608-2612.	8.8	205
94	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€lon Batteries. Angewandte Chemie, 2019, 131, 4405-4409.	1.6	36
95	Slopeâ€Dominated Carbon Anode with High Specific Capacity and Superior Rate Capability for High Safety Naâ€lon Batteries. Angewandte Chemie - International Edition, 2019, 58, 4361-4365.	7.2	171
96	Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nature Energy, 2019, 4, 594-603.	19.8	572
97	In Situ Formation of a Stable Interface in Solid-State Batteries. ACS Energy Letters, 2019, 4, 1650-1657.	8.8	93
98	Ni-based cathode materials for Na-ion batteries. Nano Research, 2019, 12, 2018-2030.	5.8	67
99	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	19.8	630
100	Trimethyl Borate as Film-Forming Electrolyte Additive To Improve High-Voltage Performances. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17435-17443.	4.0	77
101	A novel NASICON-based glass-ceramic composite electrolyte with enhanced Na-ion conductivity. Energy Storage Materials, 2019, 23, 514-521.	9.5	97
102	An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dualâ€lon Batteries. Advanced Energy Materials, 2019, 9, 1804022.	10.2	92
103	Lithium Plating and Stripping on Carbon Nanotube Sponge. Nano Letters, 2019, 19, 494-499.	4.5	101
104	Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness. Advanced Energy Materials, 2019, 9, 1803087.	10.2	70
105	Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy, 2018, 47, 519-526.	8.2	111
106	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2018, 57, 7056-7060.	7.2	87
107	An O3â€type Oxide with Low Sodium Content as the Phaseâ€Transitionâ€Free Anode for Sodiumâ€Ion Batteries. Angewandte Chemie, 2018, 130, 7174-7178.	1.6	14
108	Batteries: Prescribing Functional Additives for Treating the Poor Performances of Highâ€Voltage (5) Tj ETQq0 0 0 0	rgBT /Over 10.2	rlock 10 Tf 5 10

#	Article	IF	CITATIONS
109	Solidâ€State Sodium Batteries. Advanced Energy Materials, 2018, 8, 1703012.	10.2	478
110	Another Strategy, Detouring Potential Decay by Fast Completion of Cation Mixing. Advanced Energy Materials, 2018, 8, 1703092.	10.2	30
111	Drawing a Soft Interface: An Effective Interfacial Modification Strategy for Garnet-Type Solid-State Li Batteries. ACS Energy Letters, 2018, 3, 1212-1218.	8.8	321
112	Reduction Depth Dependent Structural Reversibility of Sn ₃ (PO ₄) ₂ . ACS Applied Energy Materials, 2018, 1, 129-133.	2.5	8
113	Prescribing Functional Additives for Treating the Poor Performances of Highâ€Voltage (5 Vâ€class) LiNi _{0.5} Mn _{1.5} O ₄ /MCMB Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1701398.	10.2	160
114	Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. Frontiers in Chemistry, 2018, 6, 616.	1.8	175
115	Surface Doping to Enhance Structural Integrity and Performance of Liâ€Rich Layered Oxide. Advanced Energy Materials, 2018, 8, 1802105.	10.2	228
116	Suppressing the voltage decay of low-cost P2-type iron-based cathode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 20795-20803.	5.2	54
117	Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode. ACS Energy Letters, 2018, 3, 2259-2266.	8.8	124
118	Self-Stabilized Solid Electrolyte Interface on a Host-Free Li-Metal Anode toward High Areal Capacity and Rate Utilization. Chemistry of Materials, 2018, 30, 4039-4047.	3.2	87
119	Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density. Chemical Society Reviews, 2018, 47, 6505-6602.	18.7	407
120	Preâ€Oxidationâ€Tuned Microstructures of Carbon Anodes Derived from Pitch for Enhancing Na Storage Performance. Advanced Energy Materials, 2018, 8, 1800108.	10.2	179
121	Three-dimensional atomic-scale observation of structural evolution of cathode material in a working all-solid-state battery. Nature Communications, 2018, 9, 3341.	5.8	60
122	New horizons for inorganic solid state ion conductors. Energy and Environmental Science, 2018, 11, 1945-1976.	15.6	894
123	Novel Concentrated Li[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Ether Electrolyte for Superior Stability of Metallic Lithium Anode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 4282-4289.	4.0	62
124	High-voltage and free-standing poly(propylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 152 Td (carbonate)/Li <sub and="" battery.="" composite="" electrolyte="" flexible="" for="" ion="" journal<="" lithium="" range="" solid="" td="" temperature="" wide=""><td>>6.755.2</td><td>b>La_{3< 373}</td></sub>	>6.755.2	b>La _{3< 373}
	of Materials Chemistry A, 2017, 5, 4940-4948.		
125	Novel Design Concepts of Efficient Mgâ€lon Electrolytes toward Highâ€Performance Magnesium–Selenium and Magnesium–Sulfur Batteries. Advanced Energy Materials, 2017, 7, 1602055.	10.2	231
126	An î±-CrPO ₄ -type NaV ₃ (PO ₄) ₃ anode for sodium-ion batteries with excellent cycling stability and the exploration of sodium storage behavior. Journal of Materials Chemistry A, 2017, 5, 3839-3847.	5.2	24

#	Article	IF	CITATIONS
127	In Situ Atomic-Scale Observation of Electrochemical Delithiation Induced Structure Evolution of LiCoO ₂ Cathode in a Working All-Solid-State Battery. Journal of the American Chemical Society, 2017, 139, 4274-4277.	6.6	142
128	A class of liquid anode for rechargeable batteries with ultralong cycle life. Nature Communications, 2017, 8, 14629.	5.8	71
129	Vacancy-induced MnO ₆ distortion and its impacts on structural transition of Li ₂ MnO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 7025-7031.	1.3	29
130	Perovskite La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O ₃ Nanofibers Decorated with RuO ₂ Nanoparticles as an Efficient Bifunctional Cathode for Rechargeable Li–O ₂ Batteries. ChemNanoMat, 2017, 3, 485-490.	1.5	25
131	Design and Properties Prediction of <i>AM</i> CO ₃ F by First-Principles Calculations. ACS Applied Materials & Design and Properties Prediction of <i amount<="" td=""><td>4.0</td><td>5</td></i>	4.0	5
132	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie - International Edition, 2017, 56, 7871-7875.	7.2	141
133	Structural stability and stabilization of Li ₂ MoO ₃ . Physical Chemistry Chemical Physics, 2017, 19, 17538-17543.	1.3	20
134	A Smart Flexible Zinc Battery with Cooling Recovery Ability. Angewandte Chemie, 2017, 129, 7979-7983.	1.6	59
135	A new Na[(FSO ₂)(n-C ₄ F ₉ SO ₂)N]-based polymer electrolyte for solid-state sodium batteries. Journal of Materials Chemistry A, 2017, 5, 7738-7743.	5.2	76
136	Novel Methods for Sodiumâ€lon Battery Materials. Small Methods, 2017, 1, 1600063.	4.6	84
137	A Well-Defined Silicon Nanocone–Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Deficiency, 2017, 9, 2806-2814.	4.0	29
138	Controlled deposition of Li metal. Nano Energy, 2017, 32, 241-246.	8.2	70
139	Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries. ACS Applied Materials & Design and Comparative Study of O3/P2 Hybrid Structures for Room Temperature Sodium-Ion Batteries.	4.0	95
140	Advanced Nanostructured Anode Materials for Sodium″on Batteries. Small, 2017, 13, 1701835.	5.2	206
141	Finding a Needle in the Haystack: Identification of Functionally Important Minority Phases in an Operating Battery. Nano Letters, 2017, 17, 7782-7788.	4.5	42
142	Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic) Tj ETQq0 (High-Voltage Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 41462-41472.	0 rgBT /C 4.0	Overlock 10
143	Oxysulfide LiAlSO: A Lithium Superionic Conductor from First Principles. Physical Review Letters, 2017, 118, 195901.	2.9	58
144	A Selfâ€Forming Composite Electrolyte for Solidâ€State Sodium Battery with Ultralong Cycle Life. Advanced Energy Materials, 2017, 7, 1601196.	10.2	231

#	Article	IF	Citations
145	In Situ Formation of Polysulfonamide Supported Poly(ethylene glycol) Divinyl Ether Based Polymer Electrolyte toward Monolithic Sodium Ion Batteries. Small, 2017, 13, 1601530.	5.2	58
146	In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO ₂ Lithium Batteries. Advanced Science, 2017, 4, 1600377.	5.6	377
147	Hard Carbon Microtubes Made from Renewable Cotton as Highâ€Performance Anode Material for Sodiumâ€ion Batteries. Advanced Energy Materials, 2016, 6, 1600659.	10.2	655
148	Improved Cycling Stability of Lithiumâ€Metal Anode with Concentrated Electrolytes Based on Lithium (Fluorosulfonyl)(trifluoromethanesulfonyl)imide. ChemElectroChem, 2016, 3, 531-536.	1.7	67
149	Li ₂ C ₂ , a Highâ€Capacity Cathode Material for Lithium Ion Batteries. Angewandte Chemie - International Edition, 2016, 55, 644-648.	7.2	29
150	Single Lithiumâ€ion Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie - International Edition, 2016, 55, 2521-2525.	7.2	411
151	Oxygen-driven transition from two-dimensional to three-dimensional transport behaviour in β-Li ₃ PS ₄ electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 21269-21277.	1.3	66
152	Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016, 4, 10070-10083.	5.2	243
153	Surface and Interface Issues in Spinel LiNi _{0.5} Mn _{1.5} O ₄ : Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries. Chemistry of Materials, 2016, 28, 3578-3606.	3.2	296
154	Novel 1.5 V anode materials, ATiOPO4(A = NH4, K, Na), for room-temperature sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 7141-7147.	5.2	35
155	Dynamic Octahedral Breathing in Oxygen-Deficient Ba _{0.9} Co _{0.7} Fe _{0.2} Nb _{0.1} O _{3-î} Perovskite Performing as a Cathode in Intermediate-Temperature SOFC. Inorganic Chemistry, 2016, 55, 3091-3097.	1.9	23
156	Novel Li[(CF ₃ SO ₂)(n-C ₄ F ₉ SO ₂)N]-Based Polymer Electrolytes for Solid-State Lithium Batteries with Superior Electrochemical Performance. ACS Applied Materials & Description and Superior Electrochemical Performance.	4.0	87
157	A ceramic/polymer composite solid electrolyte for sodium batteries. Journal of Materials Chemistry A, 2016, 4, 15823-15828.	5.2	152
158	Sodium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolytes for Sodiumâ€ion Batteries. ChemElectroChem, 2016, 3, 1741-1745.	1.7	76
159	Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Materials, 2016, 5, 191-197.	9.5	239
160	Toothpaste-like Electrode: A Novel Approach to Optimize the Interface for Solid-State Sodium-Ion Batteries with Ultralong Cycle Life. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32631-32636.	4.0	71
161	LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano Research, 2016, 9, 3903-3913.	5.8	29
162	A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 13046-13052.	5.2	246

#	Article	IF	Citations
163	Enhanced coking tolerance of a MgO-modified Ni cermet anode for hydrocarbon fueled solid oxide fuel cells. Journal of Materials Chemistry A, 2016, 4, 18031-18036.	5.2	45
164	High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Letters, 2016, 16, 7148-7154.	4.5	309
165	Sodiumâ€Deficient O3â€Na _{0.9} [Ni _{0.4} Mn <i>_x</i> Ti _{0.6â°'<i>x</i>}]O ₂ Layeredâ€Oxide Cathode Materials for Sodium″on Batteries. Particle and Particle Systems Characterization, 2016, 33, 538-544.	1.2	47
166	Single Lithiumâ€Ion Conducting Polymer Electrolytes Based on a Superâ€Delocalized Polyanion. Angewandte Chemie, 2016, 128, 2567-2571.	1.6	26
167	High energy density hybrid Mg ²⁺ /Li ⁺ battery with superior ultra-low temperature performance. Journal of Materials Chemistry A, 2016, 4, 2277-2285.	5.2	62
168	Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Advances, 2016, 6, 32454-32461.	1.7	90
169	A high-voltage poly(methylethyl î±-cyanoacrylate) composite polymer electrolyte for 5 V lithium batteries. Journal of Materials Chemistry A, 2016, 4, 5191-5197.	5.2	76
170	A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 96-104.	5.2	322
171	High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific Reports, 2015, 5, 14227.	1.6	117
172	Safetyâ€Reinforced Poly(Propylene Carbonate)â€Based Allâ€Solidâ€State Polymer Electrolyte for Ambientâ€Temperature Solid Polymer Lithium Batteries. Advanced Energy Materials, 2015, 5, 1501082.	10.2	532
173	Alkaliâ€lon Storage Behaviour in Spinel Lithium Titanate Electrodes. ChemElectroChem, 2015, 2, 1678-1681.	1.7	5
174	Prototype Sodiumâ€lon Batteries Using an Airâ€Stable and Co/Niâ€Free O3â€Layered Metal Oxide Cathode. Advanced Materials, 2015, 27, 6928-6933.	11,1	504
175	A Novel High Capacity Positive Electrode Material with Tunnelâ€√ype Structure for Aqueous Sodiumâ€lon Batteries. Advanced Energy Materials, 2015, 5, 1501005.	10.2	161
176	Reversible reduction of Li ₂ CO ₃ . Journal of Materials Chemistry A, 2015, 3, 14173-14177.	5.2	80
177	Rigid–Flexible Coupling High Ionic Conductivity Polymer Electrolyte for an Enhanced Performance of LiMn ₂ O ₄ /Graphite Battery at Elevated Temperature. ACS Applied Materials & Amp; Interfaces, 2015, 7, 4720-4727.	4.0	108
178	Strategies for improving the cyclability and thermo-stability of LiMn ₂ O ₄ -based batteries at elevated temperatures. Journal of Materials Chemistry A, 2015, 3, 4092-4123.	5.2	258
179	Compatible interface design of CoO-based Li-O2 battery cathodes with long-cycling stability. Scientific Reports, 2015, 5, 8335.	1.6	102
180	Insight into the Structure and Functional Application of the Sr0.95Ce0.05CoO3â [^] δ Cathode for Solid Oxide Fuel Cells. Inorganic Chemistry, 2015, 54, 3477-3484.	1.9	24

#	Article	IF	CITATIONS
181	Anti-P2 structured Na0.5NbO2and its negative strain effect. Energy and Environmental Science, 2015, 8, 2753-2759.	15.6	14
182	A spray drying approach for the synthesis of a Na ₂ (Sub>C ₆ H ₂ O ₄ /CNT nanocomposite anode for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 13193-13197.	5.2	75
183	Lithium Storage in Heatâ€Treated SnF ₂ /Polyacrylonitrile Anode. Chemistry - A European Journal, 2015, 21, 8491-8496.	1.7	7
184	Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications, 2015, 6, 6401.	5.8	316
185	P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nature Communications, 2015, 6, 6954.	5.8	426
186	Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material. Journal of Materials Chemistry A, 2015, 3, 7849-7854.	5.2	97
187	A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation. NPG Asia Materials, 2015, 7, e153-e153.	3.8	88
188	Selecting Substituent Elements for Li-Rich Mn-Based Cathode Materials by Density Functional Theory (DFT) Calculations. Chemistry of Materials, 2015, 27, 3456-3461.	3.2	149
189	Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries. Science Advances, 2015, 1, e1500330.	4.7	170
190	Workfunction, a new viewpoint to understand the electrolyte/electrode interface reaction. Journal of Materials Chemistry A, 2015, 3, 23420-23425.	5.2	21
191	Reviewâ€"Nano-Silicon/Carbon Composite Anode Materials Towards Practical Application for Next Generation Li-lon Batteries. Journal of the Electrochemical Society, 2015, 162, A2509-A2528.	1.3	289
192	Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 71-77.	5.2	432
193	Direct Observation of Ordered Oxygen Defects on the Atomic Scale in Li ₂ O ₂ for Liâ€O ₂ Batteries. Advanced Energy Materials, 2015, 5, 1400664.	10.2	32
194	Cereusâ€Shaped Mesoporous Rutile TiO ₂ Formed in Ionic Liquid: Synthesis and Liâ€Storage Properties. ChemElectroChem, 2014, 1, 549-553.	1.7	13
195	Atomic Structure and Kinetics of NASICON Na _x V ₂ (PO ₄) ₃ Cathode for Sodiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 4265-4272.	7.8	323
196	Graphene–Co ₃ O ₄ nanocomposite as an efficient bifunctional catalyst for lithium–air batteries. Journal of Materials Chemistry A, 2014, 2, 7188-7196.	5.2	192
197	Feasibility of Using Li ₂ MoO ₃ in Constructing Li-Rich High Energy Density Cathode Materials. Chemistry of Materials, 2014, 26, 3256-3262.	3.2	106
198	Tuning charge–discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nature Communications, 2014, 5, 5381.	5.8	180

#	Article	IF	CITATIONS
199	Carbon-coated hierarchically porous silicon as anode material for lithium ion batteries. RSC Advances, 2014, 4, 15314.	1.7	35
200	Single ion solid-state composite electrolytes with high electrochemical stability based on a poly(perfluoroalkylsulfonyl)-imide ionene polymer. Journal of Materials Chemistry A, 2014, 2, 15952-15957.	5.2	49
201	Improved electron/Li-ion transport and oxygen stability of Mo-doped Li2MnO3. Journal of Materials Chemistry A, 2014, 2, 4811.	5.2	101
202	Novel approach for a high-energy-density Li–air battery: tri-dimensional growth of Li2O2 crystals tailored by electrolyte Li+ ion concentrations. Journal of Materials Chemistry A, 2014, 2, 9020.	5.2	41
203	Remarkably Improved Electrode Performance of Bulk MnS by Forming a Solid Solution with FeS – Understanding the Li Storage Mechanism. Advanced Functional Materials, 2014, 24, 5557-5566.	7.8	49
204	Screening possible solid electrolytes by calculating the conduction pathways using Bond Valence method. Science China: Physics, Mechanics and Astronomy, 2014, 57, 1526-1536.	2.0	36
205	Insight into Enhanced Cycling Performance of Li–O2 Batteries Based on Binary CoSe2/CoO Nanocomposite Electrodes. Journal of Physical Chemistry Letters, 2014, 5, 615-621.	2.1	52
206	Rechargeable Li/CO2–O2 (2 : 1) battery and Li/CO2 battery. Energy and Environmental Science, 2014,	, 71,56877.	281
207	Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Scientific Reports, 2014, 4, 3935.	1.6	203
208	Experimental visualization of the diffusion pathway of sodium ions in the Na3[Ti2P2O10F] anode for sodium-ion battery. Scientific Reports, 2014, 4, 7231.	1.6	48
209	Taichi-inspired rigid-flexible coupling cellulose-supported solid polymer electrolyte for high-performance lithium batteries. Scientific Reports, 2014, 4, 6272.	1.6	127
210	Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy and Environmental Science, 2013, 6, 2338.	15.6	2,799
211	Polypyrrole–NiO composite as high-performance lithium storage material. Electrochimica Acta, 2013, 105, 162-169.	2.6	40
212	Highly Ordered Mesoporous Crystalline MoSe ₂ Material with Efficient Visibleâ€Lightâ€Driven Photocatalytic Activity and Enhanced Lithium Storage Performance. Advanced Functional Materials, 2013, 23, 1832-1838.	7.8	285
213	Superior Electrochemical Performance and Storage Mechanism of Na ₃ V ₂ (PO ₄) ₃ Cathode for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 156-160.	10.2	817
214	Sodium Storage and Transport Properties in Layered Na ₂ Ti ₃ O ₇ for Roomâ€Temperature Sodiumâ€Ion Batteries. Advanced Energy Materials, 2013, 3, 1186-1194.	10.2	456
215	Atomic Structure of Li ₂ MnO ₃ after Partial Delithiation and Reâ€Lithiation. Advanced Energy Materials, 2013, 3, 1358-1367.	10.2	211
216	Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2278-2292.	2.0	25

#	Article	IF	CITATIONS
217	Sodium-Ion Batteries: Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3Cathode for Room-Temperature Sodium-Ion Batteries (Adv. Energy Mater. 2/2013). Advanced Energy Materials, 2013, 3, 138-138.	10.2	4
218	The low-temperature (400 \hat{A}° C) coating of few-layer graphene on porous Li4Ti5O12via C28H16Br2 pyrolysis for lithium-ion batteries. RSC Advances, 2012, 2, 1751.	1.7	40
219	Nanostructured ceria-based materials: synthesis, properties, and applications. Energy and Environmental Science, 2012, 5, 8475.	15.6	984
220	Lithium storage in nitrogen-rich mesoporous carbon materials. Energy and Environmental Science, 2012, 5, 7950.	15.6	593
221	A novel assembly of LiFePO4 microspheres from nanoplates. CrystEngComm, 2012, 14, 4344.	1.3	24
222	New Insight into the Atomic Structure of Electrochemically Delithiated O3-Li _(1–<i>x</i>) CoO ₂ (0 ≠ <i>x</i> ≠0.5) Nanoparticles. Nano Letters, 2012, 1 6192-6197.	. 2, 5	128
223	Perovskite Sr0.95Ce0.05CoO3â^'Î' loaded with copper nanoparticles as a bifunctional catalyst for lithium-air batteries. Journal of Materials Chemistry, 2012, 22, 18902.	6.7	131
224	Disodium Terephthalate (Na ₂ C ₈ H ₄ O ₄) as High Performance Anode Material for Lowâ€Cost Roomâ€Temperature Sodiumâ€Ion Battery. Advanced Energy Materials, 2012, 2, 962-965.	10.2	498
225	Capacitive Energy Storage on Fe/Li ₃ PO ₄ Grain Boundaries. Journal of Physical Chemistry C, 2011, 115, 3803-3808.	1.5	44
226	Atomic-scale investigation on lithium storage mechanism in TiNb2O7,. Energy and Environmental Science, 2011, 4, 2638.	15.6	256
227	A hybrid material of vanadium nitride and nitrogen-doped graphene for lithium storage. Journal of Materials Chemistry, 2011, 21, 11916.	6.7	96
228	Anomalous lithium storage in a novel nanonet composed by SnO2 nanoparticles and poly(ethylene) Tj ETQq0 0 0 0	rgBT /Over	rlock 10 Tf
229	Lithium deintercalation behavior in Li-rich vanadium phosphate as a potential cathode for Li-ion batteries. Journal of Materials Chemistry, 2011, 21, 14760.	6.7	20
230	Polypyrrole-iron-oxygen coordination complex as high performance lithium storage material. Energy and Environmental Science, 2011, 4, 3442.	15.6	62
231	Antisite defects and Mg doping in LiFePO4: aÂfirst-principles investigation. Applied Physics A: Materials Science and Processing, 2011, 104, 529-537.	1.1	47
232	Nonâ€Corrosive, Nonâ€Absorbing Organic Redox Couple for Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 3358-3365.	7.8	109
233	xmins:mmi="http://www.w3.org/1998/Math/Math/Mil" display="inline"> <mml:mi>M</mml:mi> -doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:msub><mml:mrow><mml:mtext>CeO</mml:mtext></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:math>	1.1 2 <td>112 n></td>	112 n>
234	xmins.mm="ncp://www.we.org/2006/Math/Math/Math/Math/Math/Math/Math/Math	11.1	1,633

#	Article	IF	Citations
235	Controllable Synthesis of Shuttleâ€6haped Ceria and Its Catalytic Properties for CO Oxidation. European Journal of Inorganic Chemistry, 2009, 2009, 3883-3887.	1.0	41
236	TG-MS analysis on thermal decomposable components in the SEI film on Cr2O3 powder anode in Li-ion batteries. Ionics, 2009, 15, 91-96.	1.2	27
237	Improving the Performances of LiCoO[sub 2] Cathode Materials by Soaking Nano-Alumina in Commercial Electrolyte. Journal of the Electrochemical Society, 2007, 154, A55.	1.3	42
238	A new route to single crystalline vanadium dioxide nanoflakes via thermal reduction. Journal of Materials Research, 2007, 22, 1921-1926.	1.2	15
239	Performance improvement of LiCoO2 by molten salt surface modification. Journal of Power Sources, 2007, 167, 504-509.	4.0	21
240	New concept of surface modification to LiCoO2. Journal of Power Sources, 2007, 174, 328-334.	4.0	42
241	Mesoscale Organization of Flower-Like La2O2CO3and La2O3Microspheres. Journal of the American Ceramic Society, 2007, 90, 2576-2581.	1.9	31
242	lodine ion transport in solid electrolyte LiI(C3H5NO)2: a first-principles identification. lonics, 2007, 12, 343-347.	1.2	13
243	Origin of Solid Electrolyte Interphase on Nanosized LiCoO[sub 2]. Electrochemical and Solid-State Letters, 2006, 9, A328.	2.2	63
244	Coating Material-Induced Acidic Electrolyte Improves LiCoO[sub 2] Performances. Electrochemical and Solid-State Letters, 2006, 9, A552.	2.2	27
245	Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12. Physica Status Solidi (B): Basic Research, 2006, 243, 1835-1841.	0.7	83
246	Obtaining ultra-long copper nanowires via a hydrothermal process. Science and Technology of Advanced Materials, 2005, 6, 761-765.	2.8	85
247	Ab initiostudies on the stability and electronic structure ofLiCoO2(003) surfaces. Physical Review B, 2005, 71, .	1.1	29
248	First-principles investigation of the structural, magnetic, and electronic properties of olivineLiFePO4. Physical Review B, 2005, 71, .	1.1	57
249	Understanding mechanism of improved electrochemical performance of surface modified LiCoO2. Solid State Ionics, 2004, 175, 239-242.	1.3	20
250	First-principles study of Li ion diffusion inLiFePO4. Physical Review B, 2004, 69, .	1.1	250
251	Electrochemical Characterization of Positive Electrode Material LiNi[sub 1/3]Co[sub 1/3]Mn[sub 1/3]O[sub 2] and Compatibility with Electrolyte for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A914.	1.3	143
252	Electrochemical and In Situ Synchrotron XRD Studies on Al[sub 2]O[sub 3]-Coated LiCoO[sub 2] Cathode Material. Journal of the Electrochemical Society, 2004, 151, Al344.	1.3	108

#	Article	IF	Citations
253	SPECTROSCOPIC STUDIES OF SOLID-ELECTROLYTE INTERPHASE ON POSITIVE AND NEGATIVE ELECTRODES FOR LITHIUM ION BATTERIES., 2004, , 140-197.		2
254	Performance Improvement of Surface-Modified LiCoO[sub 2] Cathode Materials: An Infrared Absorption and X-Ray Photoelectron Spectroscopic Investigation. Journal of the Electrochemical Society, 2003, 150, A199.	1.3	82
255	First-principles studies of cation-doped spinelLiMn2O4for lithium ion batteries. Physical Review B, 2003, 67, .	1.1	51
256	Nanosized SnSb Alloy Pinning on Hard Non-Graphitic Carbon Spherules as Anode Materials for a Li Ion Battery. Chemistry of Materials, 2002, 14, 103-108.	3.2	153
257	Electrochemical Evaluation and Structural Characterization of Commercial LiCoO[sub 2] Surfaces Modified with MgO for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2002, 149, A466.	1.3	175
258	Structural and electrochemical characterizations of surface-modified LiCoO2 cathode materials for Li-ion batteries. Solid State Ionics, 2002, 148, 335-342.	1.3	204
259	Al2O3-coated LiCoO2 as cathode material for lithium ion batteries. Solid State Ionics, 2002, 152-153, 341-346.	1.3	125
260	New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. Journal of Physical Chemistry B, 2001, 105, 9966-9969.	1,2	85
261	Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. Journal of Materials Chemistry, 2001, 11, 1502-1505.	6.7	98
262	Spectroscopic studies on interactions and microstructures in propylene carbonate?LiTFSI electrolytes. Journal of Raman Spectroscopy, 2001, 32, 900-905.	1.2	70
263	Polymer-in-salt electrolytes based on PAN-LiTFSI. , 2000, , .		0
264	Preparation of superionic conductor Agl nano-wires in alumina template by Electrochemical dual liquor deposition (EDLD). , 2000, , .		0
265	Anomalous Conductivity of Glassy Li ₂ :4 O :4 MnO _{2-x} :4 B ₂	ub> <font:< td=""><td>>○ /font>∢s</td></font:<>	> ○ /font>∢s
266	Crystallization mechanism in amorphous material of 0.5LiMnO2-0.5B2O3. Journal of Materials Science, 2000, 35, 1695-1698.	1.7	5
267	Raman Spectral Studies on Solid State Interphase in Li Batteries. , 2000, , .		0
268	Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature. Journal of Materials Chemistry, 2000, 10, 693-696.	6.7	64
269	Surface-Enhanced Raman Scattering Study on Passivating Films of Ag Electrodes in Lithium Batteries. Journal of Physical Chemistry B, 2000, 104, 8477-8480.	1.2	25
270	Activation of LiMnBO glass as cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2000, 10, 1465-1467.	6.7	7

#	Article	IF	CITATIONS
271	Electronic conductivity of La0.9Sr0.1InO3-δ., 2000, , .		O
272	Nanosized alloy-based anode materials for Li ion batteries. , 2000, , .		1
273	Electrochemical performance of Ni -deposited graphite anodes for lithium secondary batteries., 2000,,.		0
274	Sol-Gel Synthesis and Properties of $font\$ Conty-Doped $font\$ LalnOfont Sub>3Perovskite Oxide. , 2000, , .		0
275	Studies of Stannic Oxide as an Anode Material for Lithiumâ€lon Batteries. Journal of the Electrochemical Society, 1998, 145, 59-62.	1.3	156
276	Ion Association and Salvation Studies of LiClO4/Ethylene Carbonate Electrolyte by Raman and Infrared Spectroscopy. Journal of the Electrochemical Society, 1998, 145, 3346-3350.	1.3	57
277	Dispersion effects of Raman lines in carbons. Journal of Applied Physics, 1998, 84, 227-231.	1.1	44
278	Characterizations of crystalline structure and electrical properties of pyrolyzed polyfurfuryl alcohol. Journal of Applied Physics, 1997, 82, 5705-5710.	1.1	36
279	Experimental Evidence of the Interaction Between Polyacrylonitrile and Ethylene Carbonate Plasticizer by Raman Spectroscopy. Journal of Raman Spectroscopy, 1996, 27, 609-613.	1.2	5
280	Raman Spectroscopic Investigation of the Dissociation of Dimethylsulphoxide Induced by Polyacrylonitrile. Journal of Raman Spectroscopy, 1996, 27, 901-906.	1.2	5
281	Tribological properties of fullerenes C ₆₀ and C ₇₀ microparticles. Journal of Materials Research, 1996, 11, 2749-2756.	1.2	24
282	Recent Advances in Fast Ion Conducting Materials and Devices. , 1990, , .		2
283	SUPERCONDUCTORS WITH HIGH ZERO-RESISTANCE TEMPERATURE IN Ln-Ba-Cu-O SYSTEM (Ln=Gd, Dy, Ho,) Tj	ETQq1 1 ().784314 rg8
284	MAGNETIZATION OF HIGH Tc SUPERCONDUCTING Ba-Y-Cu-O. International Journal of Modern Physics B, 1987, 01, 509-512.	1.0	1
285	ELECTRON TUNNELING MEASUREMENTS OF ENERGY GAP IN SUPERCONDUCTORS YBaCuO, LaSrCuO AND BPBO. International Journal of Modern Physics B, 1987, 01, 555-559.	1.0	1
286	THE MICRO-REGION COMPOSITIONAL VARIATION OF Y1Ba2Cu3O9â^'x SINGLE PHASE SUPERCONDUCTOR. International Journal of Modern Physics B, 1987, 01, 231-236.	1.0	1
287	SOME FACTORS EFFECT ON ZERO-RESISTANCE TEMPERATURE OF SUPERCONDUCTR Y1Ba2Cu3O9â°'x. International Journal of Modern Physics B, 1987, 01, 267-272.	1.0	2