
Michael A Reynolds

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Simple and Rapid Method of Forming Doubleâ€6ided TiO ₂ Nanotube Arrays. ChemElectroChem, 2022, 9, .	3.4	3
2	Quest CCS facility: Halite damage and injectivity remediation in CO2 injection wells. International Journal of Greenhouse Gas Control, 2022, 119, 103718.	4.6	11
3	Lignin-Derived Non-Heme Iron and Manganese Complexes: Catalysts for the On-Demand Production of Chlorine Dioxide in Water under Mild Conditions. Inorganic Chemistry, 2021, 60, 2905-2913.	4.0	8
4	Suppressing Barium Sulfate Crystallization with Hydroxycitrate: A Dual Nucleation and Growth Inhibitor. Chemistry of Materials, 2021, 33, 6997-7007.	6.7	7
5	Alginate as a green inhibitor of barite nucleation and crystal growth. Molecular Systems Design and Engineering, 2021, 6, 508-519.	3.4	9
6	A Technical Playbook for Chemicals and Additives Used in the Hydraulic Fracturing of Shales. Energy & Fuels, 2020, 34, 15106-15125.	5.1	32
7	Acidic Polysaccharides as Green Alternatives for Barite Scale Dissolution. ACS Applied Materials & Interfaces, 2020, 12, 55434-55443.	8.0	11
8	Special Issue of <i>Energy & Fuels</i> Honoring Michael T. Klein. Energy & Fuels, 2020, 34, 15079-15081.	5.1	2
9	Room-Temperature Catalytic Treatment of High-Salinity Produced Water at Neutral pH. Industrial & Engineering Chemistry Research, 2020, 59, 10356-10363.	3.7	2
10	Fit-for-purpose treatment goals for produced waters in shale oil and gas fields. Water Research, 2020, 173, 115467.	11.3	71
11	A microfluidic approach for probing hydrodynamic effects in barite scale formation. Lab on A Chip, 2019, 19, 1534-1544.	6.0	15
12	Highly-active nickel phosphide hydrotreating catalysts prepared in situ using nickel hypophosphite precursors. Journal of Catalysis, 2016, 335, 204-214.	6.2	56
13	Carbazole hydrodenitrogenation over nickel phosphide and Ni-rich bimetallic phosphide catalysts. Applied Catalysis A: General, 2014, 482, 221-230.	4.3	40
14	Ruthenium Derivatives of NiS2N2Complexes as Analogues of Bioorganometallic Reaction Centers. Organometallics, 2003, 22, 1619-1625.	2.3	48
15	Hydrogenation and Carbonâ^'Sulfur Bond Hydrogenolysis of Benzothiophene Promoted by Re2(CO)10and H4Re4(CO)12. Inorganic Chemistry, 2003, 42, 2191-2193.	4.0	19
16	Re2(CO)10-Promoted S-Binding, Câ^'S Bond Cleavage, and Hydrogenation of Benzothiophenes: Organometallic Models for the Hydrodesulfurization of Thiophenes. Journal of the American Chemical Society, 2002, 124, 1689-1697.	13.7	32
17	The Influence of Cyanide on the Carbonylation of Iron(II):  Synthesis of Feâ^'SRâ^'CNâ^'CO Centers Related to the Hydrogenase Active Sites. Journal of the American Chemical Society, 2001, 123, 6933-6934.	13.7	83
18	Re2(CO)10-Mediated Carbonâ^'Hydrogen and Carbonâ^'Sulfur Bond Cleavage of Dibenzothiophene and 2,5-Dimethylthiophene. Organometallics, 2001, 20, 1071-1078.	2.3	55

#	Article	IF	CITATIONS
19	Organometallic models of catalytic hydrodesulfurization: Re2(CO)10-promoted cleavage of C–S bonds in benzothiophene. Chemical Communications, 2000, , 513-514.	4.1	20
20	Transition Metal Complexes of Chromium, Molybdenum, Tungsten, and Manganese Containing η1(S)-2,5-Dimethylthiophene, Benzothiophene, and Dibenzothiophene Ligands. Organometallics, 1999, 18, 4075-4081.	2.3	42
21	Minireview on the Evolution of Tetrathiometallate Salts as Protean Building Blocks of Catalysts and Materials for the Energy Transition: Recent Advances and Future Perspectives. Energy & Fuels, 0, , .	5.1	0
22	Suppressing barite crystallization with organophosphorus compounds. CrystEngComm, 0, , .	2.6	1