
## **Qisheng Zhang**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825666/publications.pdf Version: 2024-02-01



**OISHENC ZHANC** 

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A wide-bandgap, high-mobility electron-transporting material containing a 9,9′-spirobithioxanthene<br>skeleton. Chemical Engineering Journal, 2022, 429, 132215.                                                  | 12.7 | 10        |
| 2  | Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nature Materials, 2022, 21, 210-216.                                                             | 27.5 | 146       |
| 3  | Fundamental theories of TADF. , 2022, , 71-89.                                                                                                                                                                    |      | Ο         |
| 4  | Tuning the Excited State of Tetradentate Pd( II ) and Pt( II ) Complexes through Benzannulated N<br>â€Heteroaromatic Ring and Central Metal. Chinese Journal of Chemistry, 2022, 40, 223-234.                     | 4.9  | 8         |
| 5  | Selection of side groups on simple <scp>nonâ€fullerene</scp> acceptors for the application in organic solar cells: From flexible to rigid. Journal of Polymer Science, 2022, 60, 2343-2351.                       | 3.8  | 1         |
| 6  | Ultrapure blue organic light-emitting diodes exhibiting 13 nm full width at half-maximum. Journal of<br>Materials Chemistry C, 2022, 10, 7799-7802.                                                               | 5.5  | 17        |
| 7  | Zero–Zero Energy-Dominated Degradation in Blue Organic Light-Emitting Diodes Employing Thermally<br>Activated Delayed Fluorescence. ACS Applied Materials & Interfaces, 2022, 14, 22332-22340.                    | 8.0  | 7         |
| 8  | Efficient and stable deep blue thermally activated delayed fluorescent molecules based on a bipyridine acceptor core. Journal of Materials Chemistry C, 2021, 9, 3088-3095.                                       | 5.5  | 6         |
| 9  | Efficient Intramolecular Chargeâ€Transfer Fluorophores Based on Substituted Triphenylphosphine<br>Donors. Angewandte Chemie, 2021, 133, 15176-15180.                                                              | 2.0  | 4         |
| 10 | Efficient Intramolecular Chargeâ€Transfer Fluorophores Based on Substituted Triphenylphosphine<br>Donors. Angewandte Chemie - International Edition, 2021, 60, 15049-15053.                                       | 13.8 | 14        |
| 11 | Tetradentate Platinum(II) and Palladium(II) Complexes Containing Fused 6/6/6 or 6/6/5 Metallocycles with Azacarbazolylcarbazole-Based Ligands. Inorganic Chemistry, 2021, 60, 12972-12983.                        | 4.0  | 17        |
| 12 | Deep-blue thermally activated delayed fluorescence emitter with a very high fluorescence rate.<br>Organic Electronics, 2021, 96, 106254.                                                                          | 2.6  | 2         |
| 13 | Tetradentate Platinum(II) Complexes for Highly Efficient Phosphorescent Emitters and Sky Blue OLEDs.<br>Chemistry of Materials, 2020, 32, 537-548.                                                                | 6.7  | 61        |
| 14 | Efficient and Stable Organic Light-Emitting Diodes Employing Indolo[2,3- <i>b</i> ]indole-Based<br>Thermally Activated Delayed Fluorescence Emitters. ACS Applied Materials & Interfaces, 2020, 12,<br>6127-6136. | 8.0  | 23        |
| 15 | Phosphorescent Tetradentate Platinum(II) Complexes Containing Fused 6/5/5 or 6/5/6 Metallocycles.<br>Inorganic Chemistry, 2020, 59, 18109-18121.                                                                  | 4.0  | 12        |
| 16 | Efficient deep-blue organic light-emitting diodes employing difluoroboron-enabled thermally<br>activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 17464-17473.                   | 5.5  | 19        |
| 17 | Tuning the Excited State of Tetradentate Pd(II) Complexes for Highly Efficient Deep-Blue<br>Phosphorescent Materials. Inorganic Chemistry, 2020, 59, 13502-13516.                                                 | 4.0  | 16        |
| 18 | Improving Brightness and Stability of Si-Rhodamine for Super-Resolution Imaging of Mitochondria in<br>Living Cells. Analytical Chemistry, 2020, 92, 12137-12144.                                                  | 6.5  | 17        |

QISHENG ZHANG

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Weakly Conjugated Phosphine Oxide Hosts for Efficient Blue Thermally Activated Delayed<br>Fluorescence Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12,<br>30591-30599.                     | 8.0  | 11        |
| 20 | High Fluorescence Rate of Thermally Activated Delayed Fluorescence Emitters for Efficient and Stable<br>Blue OLEDs. ACS Applied Materials & Interfaces, 2020, 12, 31706-31715.                                          | 8.0  | 27        |
| 21 | Expanding the hole delocalization range in excited molecules for stable organic light-emitting diodes<br>employing thermally activated delayed fluorescence. Journal of Materials Chemistry C, 2020, 8,<br>10021-10030. | 5.5  | 14        |
| 22 | Quantitative Design of Bright Fluorophores and AlEgens by the Accurate Prediction of Twisted Intramolecular Charge Transfer (TICT). Angewandte Chemie, 2020, 132, 10246-10258.                                          | 2.0  | 36        |
| 23 | Quantitative Design of Bright Fluorophores and AlEgens by the Accurate Prediction of Twisted<br>Intramolecular Charge Transfer (TICT). Angewandte Chemie - International Edition, 2020, 59,<br>10160-10172.             | 13.8 | 131       |
| 24 | Rotation-restricted thermally activated delayed fluorescence compounds for efficient solution-processed OLEDs with EQEs of up to 24.3% and small roll-off. Chemical Communications, 2020, 56, 5957-5960.                | 4.1  | 51        |
| 25 | Degradation Mechanisms in Blue Organic Light-Emitting Diodes. CCS Chemistry, 2020, 2, 1278-1296.                                                                                                                        | 7.8  | 60        |
| 26 | Difluoroboron-Enabled Thermally Activated Delayed Fluorescence. ACS Applied Materials &<br>Interfaces, 2019, 11, 32209-32217.                                                                                           | 8.0  | 46        |
| 27 | Improving the Stability of Green Thermally Activated Delayed Fluorescence OLEDs by Reducing the Excited-State Dipole Moment. Journal of Physical Chemistry C, 2019, 123, 29875-29883.                                   | 3.1  | 22        |
| 28 | Pyrazine-Based Blue Thermally Activated Delayed Fluorescence Materials: Combine Small<br>Singlet–Triplet Splitting With Large Fluorescence Rate. Frontiers in Chemistry, 2019, 7, 312.                                  | 3.6  | 17        |
| 29 | Dithia[3.3]paracyclophane Core: A Versatile Platform for Triplet State Fineâ€Tuning and Throughâ€Space<br>TADF Emission. Chemistry - an Asian Journal, 2019, 14, 1921-1925.                                             | 3.3  | 34        |
| 30 | Toward an Accurate Description of Thermally Activated Delayed Fluorescence: Equal Importance of Electronic and Geometric Factors. Journal of Physical Chemistry C, 2019, 123, 13869-13876.                              | 3.1  | 11        |
| 31 | Exciton―and Polaronâ€Induced Reversible Dipole Reorientation in Amorphous Organic Semiconductor<br>Films. Advanced Optical Materials, 2019, 7, 1801644.                                                                 | 7.3  | 44        |
| 32 | Understanding Solid-State Solvation-Enhanced Thermally Activated Delayed Fluorescence Using a<br>Descriptor-Tuned Screened Range-Separated Functional. Journal of Physical Chemistry C, 2019, 123,<br>4407-4416.        | 3.1  | 36        |
| 33 | Computational prediction for oxidation and reduction potentials of organic molecules used in organic light-emitting diodes. Organic Electronics, 2019, 64, 216-222.                                                     | 2.6  | 31        |
| 34 | Prediction of Intramolecular Charge-Transfer Excitation for Thermally Activated Delayed<br>Fluorescence Molecules from a Descriptor-Tuned Density Functional. Journal of Physical Chemistry C,<br>2018, 122, 7816-7823. | 3.1  | 36        |
| 35 | Highly resilient polyethylene elastomers prepared using αâ€diimine nickel catalyst with highly conjugated<br>backbone. Applied Organometallic Chemistry, 2018, 32, e4566.                                               | 3.5  | 9         |
| 36 | A high fluorescence rate is key for stable blue organic light-emitting diodes. Journal of Materials<br>Chemistry C, 2018, 6, 7728-7733.                                                                                 | 5.5  | 43        |

QISHENG ZHANG

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices. Advanced Materials, 2016, 28, 7620-7625.                                                                                                 | 21.0 | 160       |
| 38 | Theoretical predication for transition energies of thermally activated delayed fluorescence molecules. Chinese Chemical Letters, 2016, 27, 1445-1452.                                                                                                                | 9.0  | 37        |
| 39 | Blue OLEDs: Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally<br>Activated Delayed Fluorescence Devices (Adv. Mater. 35/2016). Advanced Materials, 2016, 28, 7807-7807.                                                            | 21.0 | 2         |
| 40 | Nearly 100% Internal Quantum Efficiency in Undoped Electroluminescent Devices Employing Pure<br>Organic Emitters. Advanced Materials, 2015, 27, 2096-2100.                                                                                                           | 21.0 | 495       |
| 41 | A solution-processable host material of 1,3-bis{3-[3-(9-carbazolyl)phenyl]-9-carbazolyl}benzene and its<br>application in organic light-emitting diodes employing thermally activated delayed fluorescence.<br>Journal of Materials Chemistry C, 2015, 3, 1700-1706. | 5.5  | 76        |
| 42 | Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature<br>Materials, 2015, 14, 330-336.                                                                                                                                 | 27.5 | 1,129     |
| 43 | Anthraquinone-Based Intramolecular Charge-Transfer Compounds: Computational Molecular Design,<br>Thermally Activated Delayed Fluorescence, and Highly Efficient Red Electroluminescence. Journal of<br>the American Chemical Society, 2014, 136, 18070-18081.        | 13.7 | 822       |
| 44 | Luminous Butterflies: Efficient Exciton Harvesting by Benzophenone Derivatives for Full olor<br>Delayed Fluorescence OLEDs. Angewandte Chemie - International Edition, 2014, 53, 6402-6406.                                                                          | 13.8 | 473       |
| 45 | High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2014, 2, 421-424.                                                                                             | 5.5  | 259       |
| 46 | Thermally activated delayed fluorescence from 3n <i>Ï€</i> * to 1n <i>Ï€</i> * up-conversion and its application to organic light-emitting diodes. Applied Physics Letters, 2014, 105, .                                                                             | 3.3  | 72        |
| 47 | Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence.<br>Nature Photonics, 2014, 8, 326-332.                                                                                                                              | 31.4 | 2,064     |
| 48 | Dicarbazolyldicyanobenzenes as Thermally Activated Delayed Fluorescence Emitters: Effect of<br>Substitution Position on Photoluminescent and Electroluminescent Properties. Chemistry Letters,<br>2014, 43, 319-321.                                                 | 1.3  | 58        |
| 49 | Computational Prediction for Singlet- and Triplet-Transition Energies of Charge-Transfer Compounds.<br>Journal of Chemical Theory and Computation, 2013, 9, 3872-3877.                                                                                               | 5.3  | 312       |
| 50 | Highly Efficient Organic Lightâ€Emitting Diode Based on a Hidden Thermally Activated Delayed<br>Fluorescence Channel in a Heptazine Derivative. Advanced Materials, 2013, 25, 3319-3323.                                                                             | 21.0 | 436       |
| 51 | A host material consisting of a phosphinic amide directly linked donor–acceptor structure for<br>efficient blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1,<br>2404.                                                    | 5.5  | 56        |
| 52 | Highly Efficient Organic Light-Emitting Diode Based on a Hidden Thermally Activated Delayed<br>Fluorescence Channel in a Heptazine Derivative. , 2013, , .                                                                                                           |      | 0         |
| 53 | Efficient luminescence from a copper(i) complex doped in organic light-emitting diodes by suppressing<br>C–H vibrational quenching. Chemical Communications, 2012, 48, 5340.                                                                                         | 4.1  | 92        |
| 54 | Enhanced Electroluminescence Efficiency in a Spiroâ€Acridine Derivative through Thermally Activated<br>Delayed Fluorescence. Angewandte Chemie - International Edition, 2012, 51, 11311-11315.                                                                       | 13.8 | 495       |

QISHENG ZHANG

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Design of Efficient Thermally Activated Delayed Fluorescence Materials for Pure Blue Organic Light<br>Emitting Diodes. Journal of the American Chemical Society, 2012, 134, 14706-14709.        | 13.7 | 1,370     |
| 56 | Triplet Exciton Confinement in Green Organic Lightâ€Emitting Diodes Containing Luminescent<br>Chargeâ€Transfer Cu(I) Complexes. Advanced Functional Materials, 2012, 22, 2327-2336.             | 14.9 | 279       |
| 57 | Neutral copper( <scp>i</scp> ) phosphorescent complexes from their ionic counterparts with<br>2-(2′-quinolyl)benzimidazole and phosphine mixed ligands. Dalton Transactions, 2011, 40, 686-693. | 3.3  | 130       |
| 58 | Phosphorescent Cuprous Complexes with N,O Ligands – Synthesis, Photoluminescence, and<br>Electroluminescence. European Journal of Inorganic Chemistry, 2010, 2010, 4009-4017.                   | 2.0  | 41        |
| 59 | Novel luminescent iminephosphine complex of copper(i) with high photochemical and electrochemical stability. Dalton Transactions, 2009, , 9388.                                                 | 3.3  | 64        |
| 60 | Copolymerization of Butadiene with Styrene by Nd(vers)3–Al(iâ€Bu)3–CHCl3Catalyst System. Journal of<br>Macromolecular Science - Pure and Applied Chemistry, 2004, 41, 39-48.                    | 2.2  | 9         |
| 61 | Copolymerization of butadiene with styrene using a rare-earth metal compound - dialkylmagnesium -<br>halohydrocarbon catalytic system. Polymer International, 2002, 51, 208-212.                | 3.1  | 16        |
| 62 | Homopolymerization and Copolymerization of Isoprene and Styrene with a Neodymium Catalyst Using an Alkylmagnesium Cocatalyst. Macromolecular Rapid Communications, 2001, 22, 1493.              | 3.9  | 23        |