
Alan L Shanks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can the timing and duration of planktonic larval development contribute to invasion success? A case study comparing range expansion in the European green crab, Carcinus maenas, and the native lined shore crab, Pachygrapsus crassipes, in the northeast Pacific. Biological Invasions, 2022, 24, 2917-2932.	2.4	1
2	Predator control of marine communities increases with temperature across 115 degrees of latitude. Science, 2022, 376, 1215-1219.	12.6	36
3	Marine heat waves, climate change, and failed spawning by coastal invertebrates. Limnology and Oceanography, 2020, 65, 627-636.	3.1	30
4	Revisiting cross-shelf transport of Dungeness crab (Metacarcinus magister) megalopae by the internal tide using 16Âyears of daily abundance data. Journal of Experimental Marine Biology and Ecology, 2020, 527, 151334.	1.5	4
5	Response to Shanks. Estuarine, Coastal and Shelf Science, 2019, 228, 106312.	2.1	0
6	Density of benthic macroalgae in the intertidal zone varies with surf zone hydrodynamics. Phycologia, 2019, 58, 254-259.	1.4	3
7	Comment on testing the intermittent upwelling hypothesis: Intercontinental comparisons of barnacle recruitment between South Africa and Australia. Estuarine, Coastal and Shelf Science, 2019, 228, 106313.	2.1	0
8	Testing the intermittent upwelling hypothesis: reply. Ecology, 2019, 100, e02516.	3.2	8
9	Testing the intermittent upwelling hypothesis: upwelling, downwelling, and subsidies to the intertidal zone. Ecological Monographs, 2018, 88, 22-35.	5.4	28
10	Planktonic Subsidies to Surf-Zone and Intertidal Communities. Annual Review of Marine Science, 2018, 10, 345-369.	11.6	37
11	Persistent Differences in Horizontal Gradients in Phytoplankton Concentration Maintained by Surf Zone Hydrodynamics. Estuaries and Coasts, 2018, 41, 158-176.	2.2	10
12	Mechanisms of Cross-Shore Transport and Spatial Variability of Phytoplankton on a Rip-Channeled Beach. Frontiers in Marine Science, 2018, 5, .	2.5	6
13	Surfâ€zone hydrodynamics alter phytoplankton subsidies affecting reproductive output and growth of tidal filter feeders. Ecology, 2018, 99, 1878-1889.	3.2	7
14	Massive crab recruitment events to the shallow subtidal zone. Ecology, 2017, 98, 1468-1470.	3.2	6
15	Alongshore variation in barnacle populations is determined by surf zone hydrodynamics. Ecological Monographs, 2017, 87, 508-532.	5.4	39
16	Surf zones regulate larval supply and zooplankton subsidies to nearshore communities. Limnology and Oceanography, 2017, 62, 2811-2828.	3.1	39
17	Phytoplankton subsidies to the interâ€ŧidal zone are strongly affected by surfâ€zone hydrodynamics. Marine Ecology, 2017, 38, e12441.	1.1	14
18	Surfzone hydrodynamics as a key determinant of spatial variation in rocky intertidal communities. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161017.	2.6	31

Alan L Shanks

#	Article	IF	CITATIONS
19	Variation in the abundance of Pseudo-nitzschia and domoic acid with surf zone type. Harmful Algae, 2016, 55, 172-178.	4.8	14
20	Population structure, northern range limit, and recruitment variation in the intertidal limpet Lottia scabra. Marine Biology, 2014, 161, 1073-1086.	1.5	10
21	Numerical simulations of larval transport into a ripâ€channeled surf zone. Limnology and Oceanography, 2014, 59, 1434-1447.	3.1	44
22	Does fish larval dispersal differ between high and low latitudes?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130327.	2.6	60
23	Continuous growth facilitates feeding and reproduction: impact of size on energy allocation patterns for organisms with indeterminate growth. Marine Biology, 2012, 159, 1417-1428.	1.5	12
24	Spatio-temporal dynamics of the surf-zone faunal assemblages at a Southern Oregon sandy beach. Marine Ecology, 2011, 32, 232-242.	1.1	23
25	The composition and density of fauna utilizing burrow microhabitats created by a non-native burrowing crustacean (Sphaeroma quoianum). Biological Invasions, 2010, 12, 1403-1413.	2.4	13
26	Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment. Journal of Experimental Marine Biology and Ecology, 2010, 392, 140-150.	1.5	71
27	Biological Bulletin Virtual Symposium: Biology of Marine Invertebrate Larvae. Biological Bulletin, 2009, 216, 201-202.	1.8	3
28	Confirmation of the presence and use of sandy beach surf-zones by juvenile Chinook salmon. Environmental Biology of Fishes, 2009, 85, 119-125.	1.0	9
29	Pelagic Larval Duration and Dispersal Distance Revisited. Biological Bulletin, 2009, 216, 373-385.	1.8	615
30	Bridging the gap: spanning the distance between high school and college education. Frontiers in Ecology and the Environment, 2009, 7, 221-222.	4.0	4
31	Colonization and substratum preference of an introduced burrowing crustacean in a temperate estuary. Journal of Experimental Marine Biology and Ecology, 2008, 354, 144-149.	1.5	10
32	RECRUITMENT LIMITATION IN DUNGENESS CRAB POPULATIONS IS DRIVEN BY VARIATION IN ATMOSPHERIC FORCING. Ecology, 2007, 88, 1726-1737.	3.2	75
33	Mechanisms of cross-shelf transport of crab megalopae inferred from a time series of daily abundance. Marine Biology, 2006, 148, 1383-1398.	1.5	41
34	POPULATION PERSISTENCE OF CALIFORNIA CURRENT FISHES AND BENTHIC CRUSTACEANS: A MARINE DRIFT PARADOX. Ecological Monographs, 2005, 75, 505-524.	5.4	150
35	Ocean distribution of dungeness crab megalopae and recruitment patterns to estuaries in Southern Washington State. Estuaries and Coasts, 2003, 26, 1058-1070.	1.7	28
36	Topographically generated fronts, very nearshore oceanography, and the distribution of chlorophyll, detritus, and selected diatom and dinoflagellate taxa. Marine Biology, 2003, 143, 969-980.	1.5	15

Alan L Shanks

#	Article	IF	CITATIONS
37	Fortnightly periodicity in the abundance of diatom and dinoflagellate taxa at a coastal study site. Journal of Experimental Marine Biology and Ecology, 2003, 296, 113-126.	1.5	8
38	PROPAGULE DISPERSAL DISTANCE AND THE SIZE AND SPACING OF MARINE RESERVES. , 2003, 13, 159-169.		699
39	Observations on the distribution of meroplankton during an upwelling event. Journal of Plankton Research, 2003, 25, 645-667.	1.8	31
40	Topographically generated fronts, very nearshore oceanography and the distribution of larval invertebrates and holoplankters. Journal of Plankton Research, 2003, 25, 1251-1277.	1.8	64
41	DISPERSAL POTENTIAL OF MARINE INVERTEBRATES IN DIVERSE HABITATS. , 2003, 13, 108.		2
42	Windâ€induced plume and bloom intrusions into Willapa Bay, Washington. Limnology and Oceanography, 2002, 47, 1033-1042.	3.1	57
43	Observations on the distribution of meroplankton during a downwelling event and associated intrusion of the Chesapeake Bay estuarine plume. Journal of Plankton Research, 2002, 24, 391-416.	1.8	44
44	Time series of the abundance of the post-larvae of the crabsCancer magister andcancer spp. on the Southern Oregon coast and their cross-shelf transport. Estuaries and Coasts, 2002, 25, 1138-1142.	1.7	20
45	Import of Coastally-Derived Chlorophyll a to South Slough, Oregon. Estuaries and Coasts, 2001, 24, 244.	1.7	41
46	Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front. Limnology and Oceanography, 2000, 45, 230-236.	3.1	130
47	Apparent oceanographic triggers to the spawning of the limpet Lottia digitalis (Rathke). Journal of Experimental Marine Biology and Ecology, 1998, 222, 31-41.	1.5	23
48	Feeding by a heterotrophic dinoflagellate (Noctiluca scintillans) in marine snow. Limnology and Oceanography, 1996, 41, 177-181.	3.1	29
49	TIDAL PERIODICITY IN THE DAILY SETTLEMENT OF INTERTIDAL BARNACLE LARVAE AND AN HYPOTHESIZED MECHANISM FOR THE CROSS-SHELF TRANSPORT OF CYPRIDS. Biological Bulletin, 1986, 170, 429-440.	1.8	102
50	Adding teeth to wave action: the destructive effects of wave-borne rocks on intertidal organisms. Oecologia, 1986, 69, 420-428.	2.0	103
51	Trophic Biomarkers Indicate Coastal Surf Zone Hydrodynamics Affect Resource Assimilation by Mytilus californianus Mussels. Estuaries and Coasts, 0, , 1.	2.2	1