## Dong Sun

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2825058/publications.pdf

Version: 2024-02-01

172457 118850 3,936 68 29 62 h-index citations g-index papers 68 68 68 6045 docs citations times ranked citing authors all docs

| #  | Article                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ultrafast Relaxation of Excited Dirac Fermions in Epitaxial Graphene Using Optical Differential Transmission Spectroscopy. Physical Review Letters, 2008, 101, 157402. | 7.8  | 427       |
| 2  | Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotechnology, 2012, 7, 114-118.                                                                     | 31.5 | 362       |
| 3  | Valley Carrier Dynamics in Monolayer Molybdenum Disulfide from Helicity-Resolved Ultrafast<br>Pump–Probe Spectroscopy. ACS Nano, 2013, 7, 11087-11093.                 | 14.6 | 213       |
| 4  | Nonlinear photoresponse of type-II Weyl semimetals. Nature Materials, 2019, 18, 476-481.                                                                               | 27.5 | 185       |
| 5  | Semimetals for high-performance photodetection. Nature Materials, 2020, 19, 830-837.                                                                                   | 27.5 | 181       |
| 6  | Ultrafast Broadband Photodetectors Based on Three-Dimensional Dirac Semimetal Cd <sub>3</sub> As <sub>2</sub> . Nano Letters, 2017, 17, 834-841.                       | 9.1  | 162       |
| 7  | Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nature Nanotechnology, 2019, 14, 217-222.                                 | 31.5 | 153       |
| 8  | Dynamical Evolution of Anisotropic Response in Black Phosphorus under Ultrafast Photoexcitation. Nano Letters, 2015, 15, 4650-4656.                                    | 9.1  | 142       |
| 9  | On the Quantum Spin Hall Gap of Monolayer 1T′â€WTe <sub>2</sub> . Advanced Materials, 2016, 28, 4845-4851.                                                             | 21.0 | 141       |
| 10 | Anisotropic Broadband Photoresponse of Layered Typeâ€N Weyl Semimetal MoTe <sub>2</sub> . Advanced Materials, 2018, 30, e1707152.                                      | 21.0 | 139       |
| 11 | Coherent Control of Ballistic Photocurrents in Multilayer Epitaxial Graphene Using Quantum Interference. Nano Letters, 2010, 10, 1293-1296.                            | 9.1  | 122       |
| 12 | Spectroscopic Measurement of Interlayer Screening in Multilayer Epitaxial Graphene. Physical Review Letters, 2010, 104, 136802.                                        | 7.8  | 100       |
| 13 | Broadband Anisotropic Photoresponse of the "Hydrogen Atom―Version Type-II Weyl Semimetal Candidate TalrTe <sub>4</sub> . ACS Nano, 2018, 12, 4055-4061.                | 14.6 | 94        |
| 14 | Light-induced emergent phenomena in 2D materials and topological materials. Nature Reviews Physics, 2022, 4, 33-48.                                                    | 26.6 | 94        |
| 15 | Optical Properties of Metal–Molybdenum Disulfide Hybrid Nanosheets and Their Application for Enhanced Photocatalytic Hydrogen Evolution. ACS Nano, 2014, 8, 6979-6985. | 14.6 | 92        |
| 16 | Coherent Longitudinal Acoustic Phonon Approaching THz Frequency in Multilayer Molybdenum Disulphide. Scientific Reports, 2014, 4, 5722.                                | 3.3  | 80        |
| 17 | Topological Surface State Enhanced Photothermoelectric Effect in Bi <sub>2</sub> Se <sub>3</sub> Nanoribbons. Nano Letters, 2014, 14, 4389-4394.                       | 9.1  | 79        |
| 18 | Photoresponse of a strongly correlated material determined by scanning photocurrent microscopy. Nature Nanotechnology, 2012, 7, 723-727.                               | 31.5 | 72        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IF                                        | CITATIONS         |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|
| 19 | Epitaxial Synthesis of Monolayer PtSe <sub>2</sub> Single Crystal on MoSe <sub>2</sub> with Strong Interlayer Coupling. ACS Nano, 2019, 13, 10929-10938.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.6                                      | 72                |
| 20 | Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. Nature Communications, 2018, 9, 5168.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.8                                      | 71                |
| 21 | Robust edge photocurrent response on layered type II Weyl semimetal WTe2. Nature Communications, 2019, 10, 5736.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.8                                      | 69                |
| 22 | The Opposite Anisotropic Piezoresistive Effect of ReS <sub>2</sub> . ACS Nano, 2019, 13, 3310-3319.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.6                                      | 55                |
| 23 | Absorption saturation in optically excited graphene. Applied Physics Letters, 2012, 101, .<br>Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.3                                       | 54                |
| 24 | semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi<br>mathvariant="normal"&gt;C<mml:msub><mml:mi<br>mathvariant="normal"&gt;d<mml:mn>3</mml:mn></mml:mi<br></mml:msub><mml:mi<br>mathvariant="normal"&gt;A<mml:msub><mml:mi< td=""><td>3.2</td><td>47</td></mml:mi<></mml:msub></mml:mi<br></mml:mi<br></mml:mrow></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2                                       | 47                |
| 25 | mathvariant="normal">s <mml:mn>2</mml:mn> .  Ferahertz probe of photoexcited carrier dynamics in the Dirac semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cd</mml:mi><mml: .<="" 2018,="" 98,="" b,="" physical="" review="" td=""><td>mn<b>3.3</b><td>ท<b>l:r46</b>6&gt;</td></td></mml:></mml:msub></mml:mrow></mml:math>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mn <b>3.3</b> <td>ท<b>l:r46</b>6&gt;</td> | ท <b>l:r46</b> 6> |
| 26 | Review of photo response in semiconductor transition metal dichalcogenides based photosensitive devices. Optical Materials Express, 2016, 6, 2313.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.0                                       | 44                |
| 27 | Self-powered photodetector based on vertical MoO <sub>3</sub> /MoS <sub>2</sub> hetero-structure with gate tunable photo-response. 2D Materials, 2019, 6, 035033.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4                                       | 41                |
| 28 | Current relaxation due to hot carrier scattering in graphene. New Journal of Physics, 2012, 14, 105012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.9                                       | 39                |
| 29 | Contact Engineering of Molybdenum Ditelluride Field Effect Transistors through Rapid Thermal Annealing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30107-30114.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.0                                       | 37                |
| 30 | Implementing Lateral MoSe <sub>2</sub> P–N Homojunction by Efficient Carrier-Type Modulation. ACS Applied Materials & Diterior (1998) Applied Materials & Diterior (1998) Applied Materials (1998) | 8.0                                       | 29                |
| 31 | Ultrafast photothermoelectric effect in Dirac semimetallic Cd3As2 revealed by terahertz emission. Nature Communications, 2022, 13, 1623.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.8                                      | 29                |
| 32 | Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene. Nature Communications, 2015, 6, 8105.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.8                                      | 28                |
| 33 | Experimental progress on layered topological semimetals. 2D Materials, 2019, 6, 032001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.4                                       | 26                |
| 34 | Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides. Chinese Physics B, 2017, 26, 037801.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.4                                       | 25                |
| 35 | Photocurrent response of type-II Dirac semimetal PtTe <sub>2</sub> . 2D Materials, 2020, 7, 034003.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.4                                       | 24                |
| 36 | Wet Chemical Method for Black Phosphorus Thinning and Passivation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 9213-9222.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.0                                       | 23                |

| #  | Article                                                                                                                                                                                              | lF   | Citations |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Photoluminescent Quantum Interference in a van der Waals Magnet Preserved by Symmetry Breaking. ACS Nano, 2020, 14, 1003-1010.                                                                       | 14.6 | 23        |
| 38 | One-step exfoliation and functionalization of graphene by hydrophobin for high performance water molecular sensing. Carbon, 2017, 116, 695-702.                                                      | 10.3 | 20        |
| 39 | Entanglement-changing power of two-qubit unitary operations. Physical Review A, 2004, 70, .                                                                                                          | 2.5  | 19        |
| 40 | Evidence for interlayer electronic coupling in multilayer epitaxial graphene from polarization-dependent coherently controlled photocurrent generation. Physical Review B, 2012, 85, .               | 3.2  | 19        |
| 41 | Photovoltaic Effect and Evidence of Carrier Multiplication in Graphene Vertical Homojunctions with Asymmetrical Metal Contacts. ACS Nano, 2015, 9, 8851-8858.                                        | 14.6 | 19        |
| 42 | An ultrafast terahertz probe of the transient evolution of the charged and neutral phase of photo-excited electron-hole gas in a monolayer semiconductor. 2D Materials, 2016, 3, 014001.             | 4.4  | 18        |
| 43 | Twoâ€Dimensional Materialâ€Enhanced Flexible and Selfâ€Healable Photodetector for Largeâ€Area<br>Photodetection. Advanced Functional Materials, 2021, 31, 2100136.                                   | 14.9 | 17        |
| 44 | Dynamical evolution of anisotropic response of type-II Weyl semimetal TaIrTe4 under ultrafast photoexcitation. Light: Science and Applications, 2021, 10, 101.                                       | 16.6 | 17        |
| 45 | Solution-Based Property Tuning of Black Phosphorus. ACS Applied Materials & Interfaces, 2018, 10, 39890-39897.                                                                                       | 8.0  | 16        |
| 46 | Hot carrier cooling by acoustic phonons in epitaxial graphene by ultrafast pumpâ€probe spectroscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1194-1197.             | 0.8  | 15        |
| 47 | Single crystalline SmB6 nanowires for self-powered, broadband photodetectors covering mid-infrared. Applied Physics Letters, 2018, 112, .                                                            | 3.3  | 14        |
| 48 | Anisotropic visible photoluminescence from thermally annealed few-layer black phosphorus. Nanotechnology, 2018, 29, 245202.                                                                          | 2.6  | 13        |
| 49 | Ultraviolet Light-Induced Persistent and Degenerated Doping in MoS <sub>2</sub> for Potential Photocontrollable Electronics Applications. ACS Applied Materials & Interfaces, 2018, 10, 27840-27849. | 8.0  | 13        |
| 50 | Slow Light Using P-Doped Semiconductor Heterostructures for High-Bandwidth Nonlinear Signal Processing. Journal of Lightwave Technology, 2008, 26, 3811-3817.                                        | 4.6  | 12        |
| 51 | Thin tungsten telluride layer preparation by thermal annealing. Nanotechnology, 2016, 27, 414006.                                                                                                    | 2.6  | 12        |
| 52 | Barkhausen effect in the first order structural phase transition in type-II Weyl semimetal MoTe <sub>2</sub> . 2D Materials, 2018, 5, 044003.                                                        | 4.4  | 12        |
| 53 | Spin relaxation in charged quantum dots measured by coherent optical phase modulation spectroscopy. Solid State Communications, 2006, 140, 381-385.                                                  | 1.9  | 11        |
| 54 | Giant All-Optical Modulation of Second-Harmonic Generation Mediated by Dark Excitons. ACS Photonics, 2021, 8, 2320-2328.                                                                             | 6.6  | 11        |

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Dynamical anisotropic response of black phosphorus under magnetic field. 2D Materials, 2018, 5, 025010.                                                                     | 4.4  | 10        |
| 56 | Population Inversion and Dirac Fermion Cooling in 3D Dirac Semimetal Cd <sub>3</sub> As <sub>2</sub> . Nano Letters, 2022, 22, 1138-1144.                                   | 9.1  | 9         |
| 57 | Direct Light Orbital Angular Momentum Detection in Midâ€Infrared Based on the Typeâ€II Weyl Semimetal<br>TalrTe <sub>4</sub> . Advanced Materials, 2022, 34, .              | 21.0 | 9         |
| 58 | Circular photogalvanic effect from third-order nonlinear effect in 1T'-MoTe <sub>2</sub> . 2D Materials, 2021, 8, 025016.                                                   | 4.4  | 8         |
| 59 | Ultrafast dynamics and interlayer thermal coupling of hot carriers in epitaxial graphene. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 470-473. | 0.8  | 5         |
| 60 | Liquid phase mass production of air-stable black phosphorus/phospholipids nanocomposite with ultralow tunneling barrier. 2D Materials, 2018, 5, 025012.                     | 4.4  | 4         |
| 61 | Gradient rhenium doping enabled tunable anisotropic valleytronic material based on monolayer molybdenum disulfide. 2D Materials, 2021, 8, 035031.                           | 4.4  | 4         |
| 62 | Radio frequency polarization modulation based on an optical frequency comb. Review of Scientific Instruments, 2020, 91, 083111.                                             | 1.3  | 3         |
| 63 | Terahertz relaxation dynamics of a two-dimensional InSe multilayer. Physical Review B, 2020, 102, .                                                                         | 3.2  | 2         |
| 64 | Coherent diffraction rings induced by thermal–mechanical effect of a flexible Dirac semimetallic composite structure. Journal of Applied Physics, 2021, 129, 093102.        | 2.5  | 2         |
| 65 | THz Carrier Dynamics in Epitaxial Graphene. , 2009, , .                                                                                                                     |      | 1         |
| 66 | Ultrafast Spectroscopy of Multilayer Epitaxial Graphene. , 2009, , .                                                                                                        |      | 1         |
| 67 | Microscopic theory of quantum interference-based generation and decay of current in graphene. , 2012, , .                                                                   |      | 0         |
| 68 | Temperature-Dependent Coherently Controlled Photocurrent Generation in Epitaxial Graphene. , 2010,                                                                          |      | 0         |