James A Decaprio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2823974/publications.pdf

Version: 2024-02-01

17440 12946 18,334 141 63 131 citations h-index g-index papers 150 150 150 16970 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	TargetGeneReg 2.0: a comprehensive web-atlas for p53, p63, and cell cycle-dependent gene regulation. NAR Cancer, 2022, 4, zcac009.	3.1	19
2	Merkel Cell Carcinoma Sensitivity to EZH2 Inhibition Is Mediated by SIX1 Derepression. Journal of Investigative Dermatology, 2022, 142, 2783-2792.e15.	0.7	10
3	Long-read sequencing reveals complex patterns of wraparound transcription in polyomaviruses. PLoS Pathogens, 2022, 18, e1010401.	4.7	8
4	Merkel Cell Polyomavirus: Oncogenesis in a Stable Genome. Viruses, 2022, 14, 58.	3.3	18
5	Mass Spectrometry Based Identification of Novel HLA Class I Restricted Peptides in Merkel Cell Carcinoma. FASEB Journal, 2022, 36, .	0.5	O
6	CDC7-independent G1/S transition revealed by targeted protein degradation. Nature, 2022, 605, 357-365.	27.8	38
7	Merkel cell polyomavirus large T antigen binding to pRb promotes skin hyperplasia and tumor development. PLoS Pathogens, 2022, 18, e1010551.	4.7	9
8	Addiction of Merkel cell carcinoma to MUC1-C identifies a potential new target for treatment. Oncogene, 2022, 41, 3511-3523.	5.9	10
9	Disrupting the DREAM complex enables proliferation of adult human pancreatic \hat{l}^2 cells. Journal of Clinical Investigation, 2022, 132, .	8.2	14
10	Reversal of viral and epigenetic HLA class I repression in Merkel cell carcinoma. Journal of Clinical Investigation, 2022, 132, .	8.2	10
11	Coordinating gene expression during the cell cycle. Trends in Biochemical Sciences, 2022, 47, 1009-1022.	7.5	72
12	Milademetan is a highly potent MDM2 inhibitor in Merkel cell carcinoma. JCI Insight, 2022, 7, .	5.0	5
13	Molecular Pathogenesis of Merkel Cell Carcinoma. Annual Review of Pathology: Mechanisms of Disease, 2021, 16, 69-91.	22.4	59
14	Association between treatment center experience and survival after diagnosis of stage I to III Merkel cell carcinoma treated with surgery with or without postoperative radiation therapy. Journal of the American Academy of Dermatology, 2021, 84, 875-877.	1.2	3
15	MMB-FOXM1-driven premature mitosis is required for CHK1 inhibitor sensitivity. Cell Reports, 2021, 34, 108808.	6.4	24
16	An analysis of the use of targeted therapies in patients with advanced Merkel cell carcinoma and an evaluation of genomic correlates of response. Cancer Medicine, 2021, 10, 5889-5896.	2.8	10
17	Subtype heterogeneity and epigenetic convergence in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 5775.	12.8	59
18	The Merkel Cell Polyomavirus T Antigens Function as Tumor Promoters in Murine Skin. Cancers, 2021, 13, 222.	3.7	8

#	Article	IF	Citations
19	Simultaneous expression of MMB-FOXM1 complex components enables efficient bypass of senescence. Scientific Reports, 2021, 11, 21506.	3.3	8
20	David M. Livingston 1941–2021. Nature Cancer, 2021, 2, 1276-1277.	13.2	0
21	Pervasive generation of non-canonical subgenomic RNAs by SARS-CoV-2. Genome Medicine, 2020, 12, 108.	8.2	54
22	CHK1 Inhibitor Blocks Phosphorylation of FAM122A and Promotes Replication Stress. Molecular Cell, 2020, 80, 410-422.e6.	9.7	38
23	Real-world outcomes treating patients with advanced cutaneous squamous cell carcinoma with immune checkpoint inhibitors (CPI). British Journal of Cancer, 2020, 123, 1535-1542.	6.4	42
24	Association of Programmed Death 1 Protein Ligand (PD-L1) Expression With Prognosis in Merkel Cell Carcinoma. Frontiers in Medicine, 2020, 7, 198.	2.6	4
25	Clinical and molecular characterization of virus-positive and virus-negative Merkel cell carcinoma. Genome Medicine, 2020, 12, 30.	8.2	71
26	ViroPanel. Journal of Molecular Diagnostics, 2020, 22, 476-487.	2.8	6
27	Comprehensive metagenomic analysis of blastic plasmacytoid dendritic cell neoplasm. Blood Advances, 2020, 4, 1006-1011.	5.2	10
28	Merkel cell polyomavirus activates LSD1-mediated blockade of non-canonical BAF to regulate transformation and tumorigenesis. Nature Cell Biology, 2020, 22, 603-615.	10.3	47
29	Predictors of immunotherapy benefit in Merkel cell carcinoma. Oncotarget, 2020, 11, 4401-4410.	1.8	5
30	STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. ELife, 2020, 9, .	6.0	46
31	RB, p130 \hat{A} and p107 differentially repress G1/S and G2/M genes after p53 activation. Nucleic Acids Research, 2019, 47, 11197-11208.	14.5	47
32	A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion. Cancer Cell, 2019, 35, 283-296.e5.	16.8	71
33	Cyclin D–CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene, 2019, 38, 4962-4976.	5.9	49
34	DYRK1A regulates the recruitment of 53BP1 to the sites of DNA damage in part through interaction with RNF169. Cell Cycle, 2019, 18, 531-551.	2.6	32
35	The Genomic Landscape of Merkel Cell Carcinoma and Clinicogenomic Biomarkers of Response to Immune Checkpoint Inhibitor Therapy. Clinical Cancer Research, 2019, 25, 5961-5971.	7.0	118
36	SPOP Promotes Nanog Destruction to Suppress Stem Cell Traits and Prostate Cancer Progression. Developmental Cell, 2019, 48, 329-344.e5.	7.0	53

#	Article	IF	Citations
37	Dual inhibition of MDM2 and MDM4 in virus-positive Merkel cell carcinoma enhances the p53 response. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1027-1032.	7.1	64
38	Contribution of DNA Replication to the FAM111A-Mediated Simian Virus 40 Host Range Phenotype. Journal of Virology, 2019, 93, .	3.4	19
39	Merkel Cell Carcinoma in the HIV-1/AIDS Patient. Cancer Treatment and Research, 2019, 177, 211-229.	0.5	11
40	An open label, multicenter, phase II study of KRT-232, an oral small molecule inhibitor of MDM2, for the treatment of patients with Merkel cell carcinoma (MCC) who have failed treatment with anti-PD-1/L1 immunotherapy Journal of Clinical Oncology, 2019, 37, TPS9602-TPS9602.	1.6	2
41	Cabozantinib in Patients with Advanced Merkel Cell Carcinoma. Oncologist, 2018, 23, 814-821.	3.7	30
42	Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunology, Immunotherapy, 2018, 67, 341-351.	4.2	88
43	The biology and treatment of Merkel cell carcinoma: current understanding and research priorities. Nature Reviews Clinical Oncology, 2018, 15, 763-776.	27.6	219
44	Comprehensive genomic profiling of advanced Merkel cell carcinoma to reveal insights into immunotherapy response Journal of Clinical Oncology, 2018, 36, 9523-9523.	1.6	2
45	Transcriptional landscape of the human cell cycle. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3473-3478.	7.1	110
46	Merkel Cell Polyomavirus Exhibits Dominant Control of the Tumor Genome and Transcriptome in Virus-Associated Merkel Cell Carcinoma. MBio, 2017, 8, .	4.1	100
47	Merkel cell carcinoma. Nature Reviews Disease Primers, 2017, 3, 17077.	30.5	393
48	Merkel cell polyomavirus and Merkel cell carcinoma. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160276.	4.0	78
49	Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis. PLoS Pathogens, 2017, 13, e1006668.	4.7	84
50	Proteomic Landscape of Tissue-Specific Cyclin E Functions in Vivo. PLoS Genetics, 2016, 12, e1006429.	3.5	20
51	Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation. PLoS Pathogens, 2016, 12, e1006020.	4.7	60
52	Merkel Cell Carcinoma: A Population Analysis on Survival. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 1247-1257.	4.9	57
53	Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt. Molecular Cell, 2016, 62, 929-942.	9.7	87
54	APC/C and SCF cyclin F Constitute a Reciprocal Feedback Circuit Controlling S-Phase Entry. Cell Reports, 2016, 16, 3359-3372.	6.4	70

#	Article	IF	Citations
55	Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks. Nucleic Acids Research, 2016, 44, 6070-6086.	14.5	263
56	Differences between gene mutation profile and outcome of Merkel cell polyomavirus (MCPyV) positive and negative Merkel cell carcinoma (MCC) Journal of Clinical Oncology, 2016, 34, 9577-9577.	1.6	0
57	Does <i>Arabidopsis thaliana</i> <scp>DREAM</scp> of cell cycle control?. EMBO Journal, 2015, 34, 1987-1989.	7.8	16
58	Tumorigenic Activity of Merkel Cell Polyomavirus T Antigens Expressed in the Stratified Epithelium of Mice. Cancer Research, 2015, 75, 1068-1079.	0.9	65
59	Malawi Polyomavirus Is a Prevalent Human Virus That Interacts with Known Tumor Suppressors. Journal of Virology, 2015, 89, 857-862.	3.4	21
60	Loss of the Mammalian DREAM Complex Deregulates Chondrocyte Proliferation. Molecular and Cellular Biology, 2014, 34, 2221-2234.	2.3	28
61	The DREAM complex in antitumor activity of imatinib mesylate in gastrointestinal stromal tumors. Current Opinion in Oncology, 2014, 26, 415-421.	2.4	9
62	SMCX and components of the TIP60 complex contribute to E2 regulation of the HPV E6/E7 promoter. Virology, 2014, 468-470, 311-321.	2.4	32
63	PP2A-Mediated Regulation of Ras Signaling in G2 Is Essential for Stable Quiescence and Normal G1 Length. Molecular Cell, 2014, 54, 932-945.	9.7	52
64	The DREAM complex: master coordinator of cell cycle-dependent gene expression. Nature Reviews Cancer, 2013, 13, 585-595.	28.4	425
65	A cornucopia of human polyomaviruses. Nature Reviews Microbiology, 2013, 11, 264-276.	28.6	290
66	The DREAM Complex Mediates GIST Cell Quiescence and Is a Novel Therapeutic Target to Enhance Imatinib-Induced Apoptosis. Cancer Research, 2013, 73, 5120-5129.	0.9	72
67	Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4492-501.	7.1	146
68	Merkel Cell Polyomavirus Large T Antigen Has Growth-Promoting and Inhibitory Activities. Journal of Virology, 2013, 87, 6118-6126.	3.4	105
69	Viral Perturbations of Host Networks Reflect Disease Etiology. PLoS Computational Biology, 2012, 8, e1002531.	3.2	102
70	Identification of FAM111A as an SV40 Host Range Restriction and Adenovirus Helper Factor. PLoS Pathogens, 2012, 8, e1002949.	4.7	58
71	The CHR promoter element controls cell cycle-dependent gene transcription and binds the DREAM and MMB complexes. Nucleic Acids Research, 2012, 40, 1561-1578.	14.5	90
72	Structure of a Glomulin-RBX1-CUL1 Complex: Inhibition of a RING E3 Ligase through Masking of Its E2-Binding Surface. Molecular Cell, 2012, 47, 371-382.	9.7	71

#	Article	IF	Citations
73	The Glomuvenous Malformation Protein Glomulin Binds Rbx1 and Regulates Cullin RING Ligase-Mediated Turnover of Fbw7. Molecular Cell, 2012, 46, 67-78.	9.7	59
74	Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase. Molecular Cell, 2012, 46, 771-783.	9.7	128
75	Interpreting cancer genomes using systematic host network perturbations by tumour virus proteins. Nature, 2012, 487, 491-495.	27.8	349
76	The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression. Genes and Development, 2012, 26, 474-489.	5.9	264
77	Improved detection suggests all Merkel cell carcinomas harbor Merkel polyomavirus. Journal of Clinical Investigation, 2012, 122, 4645-4653.	8.2	192
78	A kinase shRNA screen links LATS2 and the pRB tumor suppressor. Genes and Development, 2011, 25, 814-830.	5.9	107
79	DYRK1A protein kinase promotes quiescence and senescence through DREAM complex assembly. Genes and Development, 2011, 25, 801-813.	5.9	231
80	Rictor Forms a Complex with Cullin-1 to Promote SGK1 Ubiquitination and Destruction. Molecular Cell, 2010, 39, 797-808.	9.7	84
81	A Compendium of Potential Biomarkers of Pancreatic Cancer. PLoS Medicine, 2009, 6, e1000046.	8.4	260
82	Cellular transformation by Simian Virus 40 and Murine Polyoma Virus T antigens. Seminars in Cancer Biology, 2009, 19, 218-228.	9.6	135
83	How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology, 2009, 384, 274-284.	2.4	112
84	Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis. International Journal of Cancer, 2008, 123, 2303-2314.	5.1	77
85	AMP-activated protein kinase is essential for survival in chronic hypoxia. Biochemical and Biophysical Research Communications, 2008, 370, 230-234.	2.1	22
86	Disruption of the <i>Fbxw8</i> Gene Results in Pre- and Postnatal Growth Retardation in Mice. Molecular and Cellular Biology, 2008, 28, 743-751.	2.3	45
87	PARC and CUL7 Form Atypical Cullin RING Ligase Complexes. Cancer Research, 2007, 67, 2006-2014.	0.9	56
88	The Tumor Suppressor PP2A Aβ Regulates the RalA GTPase. Cell, 2007, 129, 969-982.	28.9	179
89	Evolutionarily Conserved Multisubunit RBL2/p130 and E2F4 Protein Complex Represses Human Cell Cycle-Dependent Genes in Quiescence. Molecular Cell, 2007, 26, 539-551.	9.7	347
90	Inhibition of Simian Virus 40 Large T Antigen Helicase Activity by Fluoroquinolones. Antiviral Therapy, 2007, 12, 1-6.	1.0	55

#	Article	IF	Citations
91	A novel p53-binding domain in CUL7. Biochemical and Biophysical Research Communications, 2006, 348, 132-138.	2.1	24
92	The carboxyl-terminal domain of large T antigen rescues SV40 host range activity in trans independent of acetylation. Virology, 2006, 349, 212-221.	2.4	17
93	Is There a Role for SV40 in Human Cancer?. Journal of Clinical Oncology, 2006, 24, 4356-4365.	1.6	118
94	Targeting of p300/CREB Binding Protein Coactivators by Simian Virus 40 Is Mediated through p53. Journal of Virology, 2006, 80, 4292-4303.	3.4	31
95	Simian Virus 40 Large T Antigen's Association with the CUL7 SCF Complex Contributes to Cellular Transformation. Journal of Virology, 2005, 79, 11685-11692.	3.4	43
96	Dimerization of CUL7 and PARC Is Not Required for All CUL7 Functions and Mouse Development. Molecular and Cellular Biology, 2005, 25, 5579-5589.	2.3	29
97	Cul7/p185/p193 Binding to Simian Virus 40 Large T Antigen Has a Role in Cellular Transformation. Journal of Virology, 2004, 78, 2749-2757.	3.4	73
98	14-3-3 Family Members Act Coordinately to Regulate Mitotic Progression. Cell Cycle, 2004, 3, 670-675.	2.6	57
99	Activation of a DNA Damage Checkpoint Response in a TAF1-Defective Cell Line. Molecular and Cellular Biology, 2004, 24, 5332-5339.	2.3	25
100	p53 Targets Simian Virus 40 Large T Antigen for Acetylation by CBP. Journal of Virology, 2004, 78, 8245-8253.	3.4	51
101	Glycogen Synthase Kinase 3 Phosphorylates RBL2/p130 during Quiescence. Molecular and Cellular Biology, 2004, 24, 8970-8980.	2.3	47
102	Molecular Cloning and Characterization of the von Hippel-Lindau-Like Protein. Molecular Cancer Research, 2004, 2, 43-52.	3.4	14
103	Western blot screening for monoclonal antibodies against human separase. Journal of Immunological Methods, 2003, 274, 105-113.	1.4	4
104	Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Nature, 2003, 423, 512-518.	27.8	278
105	Telomerase Maintains Telomere Structure in Normal Human Cells. Cell, 2003, 114, 241-253.	28.9	689
106	Processing, localization, and requirement of human separase for normal anaphase progression. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4574-4579.	7.1	76
107	Targeted disruption of <i>p185/Cul7</i> gene results in abnormal vascular morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9855-9860.	7.1	134
108	Proteomics-based Target Identification. Journal of Biological Chemistry, 2003, 278, 52964-52971.	3.4	132

#	Article	IF	Citations
109	SV40 Large T Antigen Promotes Dephosphorylation of p130. Journal of Biological Chemistry, 2003, 278, 46482-46487.	3.4	19
110	Nucleocytoplasmic Shuttling of p130/RBL2: Novel Regulatory Mechanism. Molecular and Cellular Biology, 2002, 22, 453-468.	2.3	60
111	Enumeration of the Simian Virus 40 Early Region Elements Necessary for Human Cell Transformation. Molecular and Cellular Biology, 2002, 22, 2111-2123.	2.3	575
112	14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. Journal of Cell Biology, 2002, 156, 817-828.	5. 2	501
113	NFATc2-Mediated Repression of Cyclin-Dependent Kinase 4 Expression. Molecular Cell, 2002, 10, 1071-1081.	9.7	176
114	Cellular transformation by SV40 large T antigen: interaction with host proteins. Seminars in Cancer Biology, 2001, 11, 15-23.	9.6	325
115	Feedback regulation of the MBF transcription factor by cyclin Cig2. Nature Cell Biology, 2001, 3, 1043-1050.	10.3	51
116	HIRA, the Human Homologue of Yeast Hir1p and Hir2p, Is a Novel Cyclin-cdk2 Substrate Whose Expression Blocks S-Phase Progression. Molecular and Cellular Biology, 2001, 21, 1854-1865.	2.3	114
117	Calcineurin regulation of the mammalian GO/G1 checkpoint element, cyclin dependent kinase 4. Oncogene, 2000, 19, 2820-2827.	5.9	52
118	Phosphorylation of the retinoblastoma-related protein p130 in growth-arrested cells. Oncogene, 2000, 19, 5116-5122.	5.9	53
119	Cells Degrade a Novel Inhibitor of Differentiation with E1A-Like Properties upon Exiting the Cell Cycle. Molecular and Cellular Biology, 2000, 20, 8889-8902.	2.3	100
120	pRB-Dependent, J Domain-Independent Function of Simian Virus 40 Large T Antigen in Override of p53 Growth Suppression. Journal of Virology, 2000, 74, 864-874.	3.4	28
121	Loss of p19 ARF Eliminates the Requirement for the pRB-Binding Motif in Simian Virus 40 Large T Antigen-Mediated Transformation. Molecular and Cellular Biology, 2000, 20, 7624-7633.	2.3	24
122	Bcl-2 Retards Cell Cycle Entry through p27 Kip1 , pRB Relative p130, and Altered E2F Regulation. Molecular and Cellular Biology, 2000, 20, 4745-4753.	2.3	131
123	The Role of the J domain of SV40 Large T in Cellular Transformation. Biologicals, 1999, 27, 23-28.	1.4	49
124	Cytoplasmic Localization of Human cdc25C during Interphase Requires an Intact 14-3-3 Binding Site. Molecular and Cellular Biology, 1999, 19, 4465-4479.	2.3	258
125	RBP1 Recruits Both Histone Deacetylase-Dependent and -Independent Repression Activities to Retinoblastoma Family Proteins. Molecular and Cellular Biology, 1999, 19, 6632-6641.	2.3	156
126	Discrimination between Sialic Acid-Containing Receptors and Pseudoreceptors Regulates Polyomavirus Spread in the Mouse. Journal of Virology, 1999, 73, 5826-5832.	3.4	79

#	Article	IF	CITATIONS
127	The J Domain of Simian Virus 40 Large T Antigen Is Required To Functionally Inactivate RB Family Proteins. Molecular and Cellular Biology, 1998, 18, 1408-1415.	2.3	150
128	Viral Oncoproteins Discriminate between p53 and the p53 Homolog p73. Molecular and Cellular Biology, 1998, 18, 6316-6324.	2.3	179
129	Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature, 1997, 386, 177-181.	27.8	358
130	Binding and modulation of p53 by p300/CBP coactivators. Nature, 1997, 387, 823-827.	27.8	664
131	[7] Cell synchronization. Methods in Enzymology, 1995, 254, 114-124.	1.0	100
132	Expression of the Human Retinoblastoma Gene Product in Mouse Fibroblasts: Effects on Cell Proliferation and Susceptibility to Transformation. Experimental Cell Research, 1993, 207, 99-106.	2.6	6
133	Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell, 1992, 70, 351-364.	28.9	916
134	The transcription factor E2F interacts with the retinoblastoma product and a p107-cyclin A complex in a cell cycle-regulated manner. Cell, 1992, 68, 157-166.	28.9	621
135	Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either G1/S or G2/M depending on dose. Journal of Cellular Physiology, 1992, 150, 484-492.	4.1	94
136	Identification of cellular proteins that can interact specifically with the T/EIA-binding region of the retinoblastoma gene product. Cell, 1991, 64, 521-532.	28.9	572
137	The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell, 1990, 60, 387-396.	28.9	402
138	Growth inhibition by TGF- \hat{l}^2 linked to suppression of retinoblastoma protein phosphorylation. Cell, 1990, 62, 175-185.	28.9	791
139	An N-Terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p110 and a second cellular protein, p120. Cell, 1989, 58, 257-267.	28.9	285
140	SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell, 1989, 56, 57-65.	28.9	526
141	The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell, 1989, 58, 1085-1095.	28.9	942