Esin Kasapoglu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2822927/publications.pdf

Version: 2024-02-01

		471509	477307
68	1,028	17	29
papers	citations	h-index	g-index
70	70	70	249
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields, lournal of Luminescence, 2012, 132, 901-913. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric xmml:math altimg="si13.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd"	3.1	94
2	xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	3.6	64
3	xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevie. Optical Mat Electron-related optical responses in triangular quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 60, 127-132.	2.7	55
4	Donor impurity states and related optical responses in triangular quantum dots under applied electric field. Superlattices and Microstructures, 2014, 73, 171-184.	3.1	55
5	The effects of the electric and magnetic fields on the nonlinear optical properties in the step-like asymmetric quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 61, 107-110.	2.7	50
6	Electronic states in GaAs-(Al,Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields. Scientific Reports, 2019, 9, 1427.	3.3	46
7	Effects of applied electromagnetic fields on the linear and nonlinear optical properties in an inverse parabolic quantum well. Journal of Luminescence, 2012, 132, 1627-1631.	3.1	44
8	Effects of intense laser field and position dependent effective mass in Razavy quantum wells and quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 126, 114461.	2.7	36
9	Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. Physica Status Solidi (B): Basic Research, 2012, 249, 118-127.	1.5	33
10	Effects of Geometry on the Electronic Properties of Semiconductor Elliptical Quantum Rings. Scientific Reports, 2018, 8, 13299.	3.3	33
11	Intense laser field effects on the linear and nonlinear intersubband optical properties of a semi-parabolic quantum well. European Physical Journal B, 2011, 82, 13-17.	1.5	29
12	Intense laser field effect on impurity states in a semiconductor quantum well: transition from the single to double quantum well potential. European Physical Journal B, 2011, 81, 441-449.	1.5	26
13	Effects of magnetic field, hydrostatic pressure and temperature on the nonlinear optical properties in symmetric double semi-V-shaped quantum well. Optical and Quantum Electronics, 2016, 48, 1.	3.3	26
14	Intense laser field-induced nonlinear optical properties of Morse quantum well. Physica Status Solidi (B): Basic Research, 2017, 254, 1600457.	1.5	26
15	Binding energy of donor impurity states and optical absorption in the Tietz-Hua quantum well under an applied electric field. Journal of Molecular Structure, 2018, 1157, 288-291.	3.6	26
16	Combined effects of the intense laser field, electric and magnetic fields on the optical properties of n-type double $\hat{\Gamma}$ -doped GaAs quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 90, 214-217.	2.7	24
17	The effects of the intense laser field on bound states in Ga \times In1- \times N \times As1- \times N/GaAs single quantum well. European Physical Journal B, 2011, 80, 89-93.	1.5	21
18	Position-dependent mass effects on the optical responses of the quantum well with Tietz–Hua potential. Optik, 2019, 178, 1280-1284.	2.9	17

#	Article	IF	CITATIONS
19	MAGNETIC FIELD AND INTENSE LASER RADIATION EFFECTS ON THE INTERBAND TRANSITIONS IN QUANTUM WELL WIRES. Surface Review and Letters, 2004, 11, 403-409.	1.1	16
20	Zeeman splitting, Zeeman transitions and optical absorption of an electron confined in spherical quantum dots under the magnetic field. Philosophical Magazine, 2021, 101, 117-128.	1.6	16
21	SHALLOW DONORS IN A COUPLED TRIPLE GRADED QUANTUM WELL UNDER THE ELECTRIC AND MAGNETIC FIELDS. Surface Review and Letters, 2006, 13, 397-401.	1.1	15
22	Optical characterization of laser-driven double Morse quantum wells. Heliyon, 2019, 5, e02022.	3.2	14
23	Nonlinear optical properties of a semi-exponential quantum wells: Effect of high-frequency intense laser field. Optik, 2019, 185, 311-316.	2.9	14
24	Impurity-related optical response in a 2D and 3D quantum dot with Gaussian confinement under intense laser field. Philosophical Magazine, 2020, 100, 619-641.	1.6	14
25	Influence of position dependent effective mass on impurity binding energy and absorption in quantum wells with the Konwent potential. Materials Science in Semiconductor Processing, 2021, 135, 106076.	4.0	14
26	Electronic and optical properties of a $$D_2^+$ \$ complex in two-dimensional quantum dots with Gaussian confinement potential. European Physical Journal Plus, 2022, 137, 1.	2.6	14
27	Electron and donor-impurity-related Raman scattering and Raman gain in triangular quantum dots under an applied electric field. European Physical Journal B, 2016, 89, 1.	1.5	12
28	Intense laser-induced electronic and optical properties in double finite oscillator potential. Philosophical Magazine, 2019, 99, 2444-2456.	1.6	11
29	The effects of the intense laser field on the optical properties of the asymmetric parabolic quantum well. Optical and Quantum Electronics, 2017, 49, 1.	3.3	10
30	Effect of Intense Laser Field in Gaussian Quantum Well With Positionâ€Dependent Effective Mass. Physica Status Solidi (B): Basic Research, 2019, 256, 1800758.	1.5	10
31	Position dependent effective mass effect on the quantum wells with three-parameter modified Manning potential. Optik, 2021, 243, 166840.	2.9	10
32	Study of direct and indirect exciton states in GaAs-Ga1â^'xAlxAs quantum dots under the effects of intense laser field and applied electric field. European Physical Journal B, 2012, 85, 1.	1.5	9
33	Optical properties of the Tietz-Hua quantum well under the applied external fields. Physica B: Condensed Matter, 2017, 526, 127-131.	2.7	9
34	Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field. Nanomaterials, 2021, 11, 2832.	4.1	9
35	The electric field dependence of a donor impurity in graded GaAs quantum wires. Applied Physics A: Materials Science and Processing, 2004, 78, 1053-1058.	2.3	8
36	The effects of external fields on double GaAs/AlGaAs quantum well with Manning potential. Materials Science in Semiconductor Processing, 2022, 137, 106232.	4.0	8

3

#	Article	IF	CITATIONS
37	Dependence of impurity binding energy on nitrogen and indium concentrations for shallow donors in a GalnNAs/GaAs quantum well under intense laser field. European Physical Journal B, 2011, 82, 313-318.	1.5	7
38	THE INTERSUBBAND TRANSITIONS AND BINDING ENERGY OF SHALLOW DONOR IMPURITIES IN DIFFERENT SHAPED QUANTUM WELLS UNDER THE MAGNETIC FIELD. Modern Physics Letters B, 2011, 25, 2451-2459.	1.9	7
39	Electron-related optical responses in triple δ-doped quantum wells. Philosophical Magazine, 2019, 99, 644-658.	1.6	7
40	THE PHOTOIONIZATION CROSS-SECTION AND BINDING ENERGY OF IMPURITIES IN QUANTUM WIRES: EFFECTS OF THE ELECTRIC AND MAGNETIC FIELD. Surface Review and Letters, 2004, 11, 411-417.	1.1	6
41	The anisotropy effects on the shallow-donor impurity states and optical transitions in quantum dots. European Physical Journal Plus, 2021, 136, 1.	2.6	6
42	First Study on the Electronic and Donor Atom Properties of the Ultra-Thin Nanoflakes Quantum Dots. Nanomaterials, 2022, 12, 966.	4.1	6
43	Intersubband transitions in coupled triple-graded quantum wells under an electric field. Physica Status Solidi (B): Basic Research, 2005, 242, 2468-2473.	1.5	5
44	Nonlinear optical properties of asymmetric n-type double \hat{l} -doped GaAs quantum well under intense laser field. European Physical Journal B, 2017, 90, 1.	1.5	5
45	Anisotropy dependence of the optical response in an impurity doped quantum dot under intense laser field. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 114, 113566.	2.7	5
46	THE ELECTRIC FIELD DEPENDENCE OF THE PHOTOIONIZATION CROSS-SECTION OF SHALLOW DONOR IMPURITIES IN QUANTUM DOTS: INFINITE AND FINITE MODEL. Surface Review and Letters, 2006, 13, 747-752.	1.1	4
47	THE EFFECTS OF TEMPERATURE AND HYDROSTATIC PRESSURE ON THE DIAMAGNETIC SUSCEPTIBILITY OF A DONOR IN A QUANTUM WELL. Surface Review and Letters, 2011, 18, 147-152.	1.1	4
48	Effects of applied electromagnetic fields on the optical transitions in a V-shaped quantum well. Superlattices and Microstructures, 2013, 58, 87-93.	3.1	4
49	Theoretical study of electronic and optical properties in doped quantum structures with Razavy confining potential: effects of external fields. Journal of Computational Electronics, 2022, 21, 378-395.	2.5	4
50	Dynamics of nonlinear optical rectification, second, and third harmonic generation in asymmetric triangular double quantum wells due to static electric and magnetic fields. European Physical Journal Plus, 2022, 137, 1.	2.6	4
51	THE EFFECTS OF HYDROSTATIC PRESSURE AND APPLIED ELECTRIC FIELD ON SHALLOW DONOR IMPURITIES IN GaAs/GaAlAs GRADED QUANTUM WELL. Surface Review and Letters, 2005, 12, 155-159.	1.1	3
52	OPTICAL INTERSUBBAND TRANSITIONS AND BINDING ENERGIES OF DONOR IMPURITIES IN Ga _{1-x} In _x N _y As _Y As _Y As _Y As _Y As _Y As As<td>ub>1-y<td>ug>/(</td></td>	ub>1-y <td>ug>/(</td>	ug>/ (
53	Infrared transitions between hydrogenic states in GalnNAs/GaAs quantum wells. International Journal of Modern Physics B, 2016, 30, 1650139.	2.0	3
54	Donor Impurity-Related Optical Absorption in GaAs Elliptic-Shaped Quantum Dots. Journal of Nanomaterials, 2017, 2017, 1-18.	2.7	3

#	Article	IF	Citations
55	Effect of position-dependent effective mass on donor impurity- and exciton-related electronic and optical properties of 2D Gaussian quantum dots. European Physical Journal Plus, 2022, 137, 1.	2.6	3
56	Effects of Intense Laser Field on Electronic and Optical Properties of Harmonic and Variable Degree Anharmonic Oscillators. Nanomaterials, 2022, 12, 1620.	4.1	3
57	Optical Properties of Excitons in Quantum Well Wires Under the Magnetic Field. Surface Review and Letters, 2003, 10, 737-743.	1.1	2
58	BARRIER THICKNESS DEPENDENCE OF OPTICAL ABSORPTION OF EXCITONS IN GaAs COUPLED QUANTUM WIRE. Surface Review and Letters, 2004, 11 , 49-55.	1.1	2
59	Effect of crossed electric and magnetic fields on donor impurity binding energy. Applied Physics A: Materials Science and Processing, 2004, 78, 101-105.	2.3	2
60	Effect of the High-Frequency Laser Radiation on the Nonlinear Optical Properties of n-Type Double Î-Doped GaAs Quantum Wells. Journal of Nanoscience and Nanotechnology, 2019, 19, 4167-4171.	0.9	2
61	Shallow-donor impurity effects on the far infrared electron–electron optical absorption coefficient in single and core/shell spherical quantum dots with Konwent-like confinement potential. Optical and Quantum Electronics, 2022, 54, .	3.3	2
62	The polarizability and the photoionization cross-section under the external fields for donor impurities in quantum well-wire. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 332-335.	0.8	1
63	EFFECTS OF MAGNETIC AND ELECTRIC FIELDS ON THE HYDROGENIC IMPURITY IN AN ELLIPSOIDAL PARABOLIC QUANTUM DOT. Surface Review and Letters, 2008, 15, 201-205.	1.1	1
64	FINITE ELEMENT ANALYSIS OF VALENCE BAND STRUCTURE OF SQUARE QUANTUM WELL UNDER THE ELECTRIC FIELD. Surface Review and Letters, 2009, 16, 689-696.	1.1	1
65	ELECTRONIC STRUCTURE AND BAND BENDING OF MODULATION-DOPED GaAs / Al _x Ga _{1-x} As SYMMETRIC AND ASYMMETRIC DOUBLE QUANTUM WELLS UNDER AN APPLIED ELECTRIC FIELD. Surface Review and Letters. 2009. 16. 105-110.	1.1	1
66	Intense Laser Field Effects on the Shallow-Donor Impurity States in Rectangular-Shaped Quantum Well Wires. Acta Physica Polonica A, 2014, 125, 198-201.	0.5	1
67	Tailoring the optical properties of quantum ring irradiated by THz laser. Philosophical Magazine, 2019, 99, 3116-3132.	1.6	1
68	Electronic Transport Properties in GaAs/AlGaAs and InSe/InP Finite Superlattices under the Effect of a Non-Resonant Intense Laser Field and Considering Geometric Modifications. International Journal of Molecular Sciences, 2022, 23, 5169.	4.1	1