Michael M Kozlov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821763/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Negative tension controls stability and structure of intermediate filament networks. Scientific Reports, 2022, 12, 16.	3.3	3
2	Mechanism of shaping membrane nanostructures of endoplasmic reticulum. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
3	Molecular mechanics underlying flat-to-round membrane budding in live secretory cells. Nature Communications, 2022, 13, .	12.8	5
4	Mapping the electrostatic profiles of cellular membranes. Molecular Biology of the Cell, 2021, 32, 301-310.	2.1	12
5	Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nature Communications, 2021, 12, 495.	12.8	32
6	Mechanism of membrane-curvature generation by ER-tubule shaping proteins. Nature Communications, 2021, 12, 568.	12.8	55
7	Model for Bundling of Keratin Intermediate Filaments. Biophysical Journal, 2020, 119, 65-74.	0.5	9
8	Caveolae and lipid sorting: Shaping the cellular response to stress. Journal of Cell Biology, 2020, 219, .	5.2	47
9	Migrasome formation is mediated by assembly of micron-scale tetraspanin macrodomains. Nature Cell Biology, 2019, 21, 991-1002.	10.3	121
10	Forces and constraints controlling podosome assembly and disassembly. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180228.	4.0	17
11	Membrane Curvature and Tension Control the Formation and Collapse of Caveolar Superstructures. Developmental Cell, 2019, 48, 523-538.e4.	7.0	53
12	Architecture of Lipid Droplets in Endoplasmic Reticulum Is Determined by Phospholipid Intrinsic Curvature. Current Biology, 2018, 28, 915-926.e9.	3.9	148
13	Myomaker and Myomerger Work Independently to Control Distinct Steps of Membrane Remodeling during Myoblast Fusion. Developmental Cell, 2018, 46, 767-780.e7.	7.0	114
14	Membrane remodeling in clathrin-mediated endocytosis. Journal of Cell Science, 2018, 131, .	2.0	96
15	The 2018 biomembrane curvature and remodeling roadmap. Journal Physics D: Applied Physics, 2018, 51, 343001.	2.8	212
16	Resolving ESCRT-III Spirals at the Intercellular Bridge of Dividing Cells Using 3D STORM. Cell Reports, 2018, 24, 1756-1764.	6.4	69
17	Spontaneous and Intrinsic Curvature of Lipid Membranes: Back to the Origins. , 2018, , 287-309.		5
18	Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells. Biophysical Journal, 2017, 113, 2406-2414.	0.5	40

2

MICHAEL M KOZLOV

#	Article	IF	CITATIONS
19	Membrane curvature induced by proximity of anionic phospholipids can initiate endocytosis. Nature Communications, 2017, 8, 1393.	12.8	80
20	mDia1 senses both force and torque during F-actin filament polymerization. Nature Communications, 2017, 8, 1650.	12.8	83
21	Sphingomyelin metabolism controls the shape and function of the Golgi cisternae. ELife, 2017, 6, .	6.0	33
22	Membrane fission by dynamin: what we know and what we need to know. EMBO Journal, 2016, 35, 2270-2284.	7.8	388
23	Trans-Membrane Area Asymmetry Controls the Shape of Cellular Organelles. International Journal of Molecular Sciences, 2015, 16, 5299-5333.	4.1	19
24	Membrane-Mediated Interaction between Strongly Anisotropic Protein Scaffolds. PLoS Computational Biology, 2015, 11, e1004054.	3.2	62
25	Myoblast Fusion: Playing Hard to Get. Developmental Cell, 2015, 32, 529-530.	7.0	3
26	Cellular chirality arising from the self-organization of the actin cytoskeleton. Nature Cell Biology, 2015, 17, 445-457.	10.3	350
27	Front-to-Rear Membrane Tension Gradient in Rapidly Moving Cells. Biophysical Journal, 2015, 108, 1599-1603.	0.5	87
28	A Model for Shaping Membrane Sheets by Protein Scaffolds. Biophysical Journal, 2015, 109, 564-573.	0.5	24
29	Membrane tension and membrane fusion. Current Opinion in Structural Biology, 2015, 33, 61-67.	5.7	118
30	A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. ELife, 2015, 4, .	6.0	246
31	Sensing Membrane Stresses by Protein Insertions. PLoS Computational Biology, 2014, 10, e1003556.	3.2	46
32	A model for the generation and interconversion of ER morphologies. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5243-51.	7.1	112
33	Mechanisms shaping cell membranes. Current Opinion in Cell Biology, 2014, 29, 53-60.	5.4	205
34	Helfrich model of membrane bending: From Gibbs theory of liquid interfaces to membranes as thick anisotropic elastic layers. Advances in Colloid and Interface Science, 2014, 208, 25-33.	14.7	77
35	Theoretical Analysis of Membrane Tension in Moving Cells. Biophysical Journal, 2014, 106, 84-92.	0.5	35
36	Stacked Endoplasmic Reticulum Sheets Are Connected by Helicoidal Membrane Motifs. Cell, 2013, 154, 285-296.	28.9	202

MICHAEL M KOZLOV

#	Article	IF	CITATIONS
37	Cell motion mediated by friction forces: understanding the major principles. Soft Matter, 2013, 9, 5186.	2.7	7
38	Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. Journal of Cell Biology, 2013, 200, 109-123.	5.2	85
39	Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains. Cell, 2012, 149, 124-136.	28.9	318
40	Protein-driven membrane stresses in fusion and fission. Trends in Biochemical Sciences, 2010, 35, 699-706.	7.5	197
41	Mechanisms Determining the Morphology of the Peripheral ER. Cell, 2010, 143, 774-788.	28.9	460
42	Mechanisms Shaping the Membranes of Cellular Organelles. Annual Review of Cell and Developmental Biology, 2009, 25, 329-354.	9.4	368
43	Mechanics of membrane fusion. Nature Structural and Molecular Biology, 2008, 15, 675-683.	8.2	853
44	The Hydrophobic Insertion Mechanism of Membrane Curvature Generation by Proteins. Biophysical Journal, 2008, 95, 2325-2339.	0.5	347
45	Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules. Science, 2008, 319, 1247-1250.	12.6	386
46	Model of Polarization and Bistability of Cell Fragments. Biophysical Journal, 2007, 93, 3811-3819.	0.5	101
47	How Synaptotagmin Promotes Membrane Fusion. Science, 2007, 316, 1205-1208.	12.6	484
48	Determination of Lipid Spontaneous Curvature From X-Ray Examinations of Inverted Hexagonal Phases. Methods in Molecular Biology, 2007, 400, 355-366.	0.9	19
49	How proteins produce cellular membrane curvature. Nature Reviews Molecular Cell Biology, 2006, 7, 9-19.	37.0	1,130
50	Membrane shape equations. Journal of Physics Condensed Matter, 2006, 18, S1177-S1190.	1.8	4
51	Influenza Hemagglutinins Outside of the Contact Zone Are Necessary for Fusion Pore Expansion. Journal of Biological Chemistry, 2004, 279, 26526-26532.	3.4	42
52	Processive capping by formin suggests a force-driven mechanism of actin polymerization. Journal of Cell Biology, 2004, 167, 1011-1017.	5.2	108
53	Stalk Phase Formation: Effects of Dehydration and Saddle Splay Modulus. Biophysical Journal, 2004, 87, 2508-2521.	0.5	83
54	Protein-Lipid Interplay in Fusion and Fission of Biological Membranes. Annual Review of Biochemistry, 2003, 72, 175-207.	11.1	697

MICHAEL M KOZLOV

#	Article	IF	CITATIONS
55	Membrane Fission: Model for Intermediate Structures. Biophysical Journal, 2003, 85, 85-96.	0.5	169
56	Lipid Intermediates in Membrane Fusion: Formation, Structure, and Decay of Hemifusion Diaphragm. Biophysical Journal, 2002, 83, 2634-2651.	0.5	251
57	Stalk Model of Membrane Fusion: Solution of Energy Crisis. Biophysical Journal, 2002, 82, 882-895.	0.5	399
58	The Protein Coat in Membrane Fusion: Lessons from Fission. Traffic, 2002, 3, 256-267.	2.7	64
59	Fission of Biological Membranes: Interplay Between Dynamin and Lipids. Traffic, 2001, 2, 51-65.	2.7	46