Xuehai Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2821110/publications.pdf

Version: 2024-02-01

11581 9234 19,994 212 74 135 citations h-index g-index papers 234 234 234 16599 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bio-inspired short peptide self-assembly: From particles to functional materials. Particuology, 2022, 64, 14-34.	2.0	11
2	Peptide-Based Nanoarchitectonics: Self-Assembly and Biological Applications. Nanostructure Science and Technology, 2022, , 165-177.	0.1	0
3	Phthalocyanineâ€Triggered Helical Dipeptide Nanotubes with Intense Circularly Polarized Luminescence. Small, 2022, 18, e2104438.	5.2	9
4	Supramolecular cancer photoimmunotherapy based on precise peptide self-assembly design. Chemical Communications, 2022, 58, 2247-2258.	2.2	25
5	An unconventional nano-AlEgen originating from a natural plant polyphenol for multicolor bioimaging. Cell Reports Physical Science, 2022, 3, 100745.	2.8	15
6	Functional Nanomaterials Based on Selfâ€Assembly of Endogenic NIRâ€Absorbing Pigments for Diagnostic and Therapeutic Applications. Small Methods, 2022, 6, e2101359.	4.6	17
7	Phthalocyanine-Assembled "One-For-Two―Nanoparticles for Combined Photodynamic–Photothermal Therapy of Multidrug-Resistant Bacteria. ACS Applied Materials & Diterfaces, 2022, 14, 7609-7616.	4.0	24
8	Reactivity Differences Enable ROS for Selective Ablation of Bacteria. Angewandte Chemie - International Edition, 2022, 61, .	7.2	40
9	Reactivity Differences Enable ROS for Selective Ablation of Bacteria. Angewandte Chemie, 2022, 134, .	1.6	12
10	Aminoâ€Acidâ€Encoded Supramolecular Photothermal Nanomedicine for Enhanced Cancer Therapy. Advanced Materials, 2022, 34, e2200139.	11.1	78
11	Multicomponent coassembled nanodrugs based on ovalbumin, pheophorbide a and Zn2+ for in vitro photodynamic therapy. , 2022, 1, 100010 .		1
12	Coordination-assembled myricetin nanoarchitectonics for sustainably scavenging free radicals. Beilstein Journal of Nanotechnology, 2022, 13, 284-291.	1.5	3
13	Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coordination Chemistry Reviews, 2022, 460, 214481.	9.5	48
14	Acidâ∈Responsive Nanoporphyrin Evolution for Nearâ∈Infrared Fluorescenceâ∈Guided Photoâ∈Ablation of Biofilm. Advanced Healthcare Materials, 2022, 11, e2200529.	3.9	14
15	Albumin-mediated "Unlocking―of supramolecular prodrug-like nanozymes toward selective imaging-guided phototherapy. Chemical Science, 2022, 13, 7814-7820.	3.7	14
16	Orally administered covalently-assembled antioxidative peptide nanoparticles for inflammatory bowel disease therapy. Journal of Colloid and Interface Science, 2022, 626, 156-166.	5.0	9
17	Peptide-based supramolecular assembly drugs toward cancer theranostics. Expert Opinion on Drug Delivery, 2022, 19, 847-860.	2.4	6
18	Cyclic dipeptides: Biological activities and selfâ€assembled materials. Peptide Science, 2021, 113, e24202.	1.0	30

#	Article	IF	CITATIONS
19	Activatable supramolecular photosensitizers: advanced design strategies. Materials Chemistry Frontiers, 2021, 5, 1683-1693.	3.2	40
20	Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. Journal of Materials Chemistry B, 2021, 9, 4444-4458.	2.9	29
21	Metal-Free Nanoassemblies of Water-Soluble Photosensitizer and Adenosine Triphosphate for Efficient and Precise Photodynamic Cancer Therapy. ACS Nano, 2021, 15, 4979-4988.	7.3	52
22	Biomimetic Nanozymes Based on Coassembly of Amino Acid and Hemin for Catalytic Oxidation and Sensing of Biomolecules. Small, 2021, 17, e2008114.	5.2	82
23	Supramolecular Nanofibrils Formed by Coassembly of Clinically Approved Drugs for Tumor Photothermal Immunotherapy. Advanced Materials, 2021, 33, e2100595.	11.1	105
24	Assembly Induced Super-Large Red-Shifted Absorption: The Burgeoning Field of Organic Near-Infrared Materials. CCS Chemistry, 2021, 3, 678-693.	4.6	56
25	Redox-responsive nanoparticles self-assembled from porphyrin-betulinic acid conjugates for chemoand photodynamic therapy. Dyes and Pigments, 2021, 190, 109307.	2.0	5
26	Supramolecular Nanodrugs Based on Covalent Assembly of Therapeutic Peptides toward <i>In Vitro</i> Synergistic Anticancer Therapy. ChemMedChem, 2021, 16, 2381-2385.	1.6	12
27	A Bubbleâ€Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angewandte Chemie - International Edition, 2021, 60, 16547-16553.	7.2	14
28	A Bubbleâ€Assisted Approach for Patterning Nanoscale Molecular Aggregates. Angewandte Chemie, 2021, 133, 16683-16689.	1.6	0
29	Research on Business Environment Risk Governance Based on Occupational Claims: 1784 Cases of Food Safety Disputes. Complexity, 2021, 2021, 1-8.	0.9	2
30	Self-assembled peptide nanoparticles for enhanced dark-field hyperspectral imaging at the cellular and invertebrate level. Chemical Engineering Journal, 2021, 424, 130348.	6.6	24
31	Supramolecular nanozymes based on peptide self-assembly for biomimetic catalysis. Nano Today, 2021, 41, 101295.	6.2	43
32	Selfâ€assembling bile pigments for cancer diagnosis and therapy. Aggregate, 2021, 2, 84-94.	5.2	24
33	Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid–Photosensitizer Conjugates for Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 2-9.	2.3	33
34	Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. Angewandte Chemie - International Edition, 2020, 59, 3793-3801.	7.2	219
35	Supramolecular Photothermal Effects: A Promising Mechanism for Efficient Thermal Conversion. Angewandte Chemie, 2020, 132, 3821-3829.	1.6	57
36	Injectable self-assembled bola-dipeptide hydrogels for sustained photodynamic prodrug delivery and enhanced tumor therapy. Journal of Controlled Release, 2020, 319, 344-351.	4.8	52

3

#	Article	IF	CITATIONS
37	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 20582-20588.	7.2	134
38	Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chemical Science, 2020, 11, 8644-8656.	3.7	62
39	Acidâ€Activatable Transmorphic Peptideâ€Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie, 2020, 132, 20763-20769.	1.6	28
40	Supramolecular self-assembly: A facile way to fabricate protein and peptide nanomaterials., 2020,, 3-21.		2
41	Tunable Mechanical and Optoelectronic Properties of Organic Cocrystals by Unexpected Stacking Transformation from H- to J- and X-Aggregation. ACS Nano, 2020, 14, 10704-10715.	7.3	61
42	Tumor therapy based on selfâ€assembling peptides nanotechnology. View, 2020, 1, 20200020.	2.7	20
43	Supramolecular Immunotherapy of Cancer Based on the Selfâ€Assembling Peptide Design. Small Structures, 2020, 1, 2000068.	6.9	52
44	Ferric Ion Driven Assembly of Catalaseâ€like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angewandte Chemie - International Edition, 2020, 59, 23228-23238.	7.2	79
45	Ferric Ion Driven Assembly of Catalaseâ€like Supramolecular Photosensitizing Nanozymes for Combating Hypoxic Tumors. Angewandte Chemie, 2020, 132, 23428-23438.	1.6	10
46	Coassembly-Induced Transformation of Dipeptide Amyloid-Like Structures into Stimuli-Responsive Supramolecular Materials. ACS Nano, 2020, 14, 7181-7190.	7.3	62
47	Porphyrin/Ionicâ€Liquid Coâ€assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2020, 59, 17456-17460.	7.2	42
48	Selfâ€Assembling Proteins for Design of Anticancer Nanodrugs. Chemistry - an Asian Journal, 2020, 15, 1405-1419.	1.7	14
49	Peptide assembly assisted triplet–triplet annihilation photon upconversion in non-deoxygenated water. Biomaterials Science, 2020, 8, 3072-3077.	2.6	9
50	Porphyrin/lonicâ€Liquid Coâ€assembly Polymorphism Controlled by Liquid–Liquid Phase Separation. Angewandte Chemie, 2020, 132, 17609-17613.	1.6	12
51	Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. Angewandte Chemie, 2020, 132, 8708-8712.	1.6	24
52	Supramolecular Phthalocyanine Assemblies for Improved Photoacoustic Imaging and Photothermal Therapy. Angewandte Chemie - International Edition, 2020, 59, 8630-8634.	7.2	91
53	Multifunctional Antimicrobial Biometallohydrogels Based on Amino Acid Coordinated Selfâ€Assembly. Small, 2020, 16, e1907309.	5.2	196
54	Deciphering the structure-property relationship in coumarin-based supramolecular organogel materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124744.	2.3	9

#	Article	IF	CITATIONS
55	Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124805.	2.3	27
56	Dipeptide Self-assembled Hydrogels with Shear-Thinning and Instantaneous Self-healing Properties Determined by Peptide Sequences. ACS Applied Materials & Samp; Interfaces, 2020, 12, 21433-21440.	4.0	63
57	Minimal metallo-nanozymes constructed through amino acid coordinated self-assembly for hydrolase-like catalysis. Chemical Engineering Journal, 2020, 394, 124987.	6.6	35
58	Self-Assembled Nanophotosensitizing Systems with Zinc(II) Phthalocyanine-Peptide Conjugates as Building Blocks for Targeted Chemo-Photodynamic Therapy. ACS Applied Bio Materials, 2020, 3, 5463-5473.	2.3	20
59	NIR Lightâ€Driving Barrierâ€Free Group Rotation in Nanoparticles with an 88.3% Photothermal Conversion Efficiency for Photothermal Therapy. Advanced Materials, 2020, 32, e1907855.	11.1	422
60	A cruciform phthalocyanine pentad-based NIR-II photothermal agent for highly efficient tumor ablation. Chemical Science, 2019, 10, 8246-8252.	3.7	64
61	Spatiotemporally Coupled Photoactivity of Phthalocyanine–Peptide Conjugate Selfâ€Assemblies for Adaptive Tumor Theranostics. Chemistry - A European Journal, 2019, 25, 13429-13435.	1.7	38
62	Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coordination Chemistry Reviews, 2019, 397, 14-27.	9.5	54
63	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie - International Edition, 2019, 58, 18116-18123.	7.2	241
64	Robust Photothermal Nanodrugs Based on Covalent Assembly of Nonpigmented Biomolecules for Antitumor Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41898-41905.	4.0	48
65	Innenrücktitelbild: Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation (Angew. Chem. 50/2019). Angewandte Chemie, 2019, 131, 18463-18463.	1.6	0
66	Nucleation and Growth of Amino Acid and Peptide Supramolecular Polymers through Liquid–Liquid Phase Separation. Angewandte Chemie, 2019, 131, 18284-18291.	1.6	79
67	Supramolecular Protein Nanodrugs with Coordination―and Heatingâ€Enhanced Photothermal Effects for Antitumor Therapy. Small, 2019, 15, e1905326.	5. 2	33
68	Hierarchically oriented organization inÂsupramolecular peptide crystals. Nature Reviews Chemistry, 2019, 3, 567-588.	13.8	326
69	Cyclic dipeptide nanoribbons formed by dye-mediated hydrophobic self-assembly for cancer chemotherapy. Journal of Colloid and Interface Science, 2019, 557, 458-464.	5.0	21
70	High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide. Beilstein Journal of Nanotechnology, 2019, 10, 1894-1901.	1.5	15
71	A self-assembly study of PNA–porphyrin and PNA–BODIPY hybrids in mixed solvent systems. Nanoscale, 2019, 11, 3557-3566.	2.8	34
72	One-step co-assembly method to fabricate photosensitive peptide nanoparticles for two-photon photodynamic therapy. Chemical Communications, 2019, 55, 3191-3194.	2.2	28

#	Article	IF	Citations
73	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie - International Edition, 2019, 58, 5872-5876.	7.2	72
74	The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie, 2019, 131, 5930-5934.	1.6	9
75	Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter, 2019, 15, 1704-1715.	1.2	280
76	Self-assembling Collagen/Alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 570-575.	2.3	85
77	Stoichiometry-controlled secondary structure transition of amyloid-derived supramolecular dipeptide co-assemblies. Communications Chemistry, 2019, 2, .	2.0	40
78	Photoactive properties of supramolecular assembled short peptides. Chemical Society Reviews, 2019, 48, 4387-4400.	18.7	150
79	Metal-Ion Modulated Structural Transformation of Amyloid-Like Dipeptide Supramolecular Self-Assembly. ACS Nano, 2019, 13, 7300-7309.	7. 3	121
80	Frontispiz: The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie, 2019, 131, .	1.6	0
81	Peptideâ€Based Supramolecular Nanodrugs as a New Generation of Therapeutic Toolboxes against Cancer. Advanced Therapeutics, 2019, 2, 1900048.	1.6	43
82	Peptide-modulated self-assembly as a versatile strategy for tumor supramolecular nanotheranostics. Theranostics, 2019, 9, 3249-3261.	4.6	60
83	A versatile cyclic dipeptide hydrogelator: Self-assembly and rheology in various physiological conditions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 572, 259-265.	2.3	47
84	Stable and optoelectronic dipeptide assemblies for power harvesting. Materials Today, 2019, 30, 10-16.	8.3	62
85	Nanoarchitectonics for Biology. , 2019, , 209-229.		3
86	Selfâ€Assembling Endogenous Biliverdin as a Versatile Nearâ€Infrared Photothermal Nanoagent for Cancer Theranostics. Advanced Materials, 2019, 31, e1900822.	11.1	249
87	Frontispiece: The Dominant Role of Oxygen in Modulating the Chemical Evolution Pathways of Tyrosine in Peptides: Dityrosine or Melanin. Angewandte Chemie - International Edition, 2019, 58, .	7.2	0
88	Nanodrugs: Supramolecular Protein Nanodrugs with Coordination―and Heatingâ€Enhanced Photothermal Effects for Antitumor Therapy (Small 52/2019). Small, 2019, 15, 1970286.	5.2	5
89	Self-assembled injectable biomolecular hydrogels towards phototherapy. Nanoscale, 2019, 11, 22182-22195.	2.8	59
90	Covalently Assembled Dipeptide Nanoparticles with Adjustable Fluorescence Emission for Multicolor Bioimaging. ChemBioChem, 2019, 20, 555-560.	1.3	27

#	Article	IF	CITATIONS
91	Photooxidaseâ€Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on Amphiphilic Amino Acid and Phthalocyanine Coâ€Assembly. Angewandte Chemie, 2019, 131, 2022-2026.	1.6	13
92	Photooxidaseâ€Mimicking Nanovesicles with Superior Photocatalytic Activity and Stability Based on Amphiphilic Amino Acid and Phthalocyanine Coâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 2000-2004.	7.2	86
93	Self-Assembling Peptide-Based Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 2019, 92, 70-79.	2.0	118
94	Supramolecular Photothermal Nanomaterials as an Emerging Paradigm toward Precision Cancer Therapy. Advanced Functional Materials, 2019, 29, 1806877.	7.8	186
95	Coordination-assembled supramolecular nanoplatforms: structural modulation and theranostic applications. Current Opinion in Biotechnology, 2019, 58, 45-52.	3.3	22
96	Kinetically Controlled Self-Assembly of Phthalocyanine–Peptide Conjugate Nanofibrils Enabling Superlarge Redshifted Absorption. CCS Chemistry, 2019, 1, 173-180.	4.6	66
97	Crossâ€Linking of Thiolated Paclitaxel–Oligo(<i>p</i> pi>â€phenylene vinylene) Conjugates Aggregates inside Tumor Cells Leads to "Chemical Locks―That Increase Drug Efficacy. Advanced Materials, 2018, 30, 1704888.	11.1	61
98	Frontispiece: Amino Acid Coordinated Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, .	1.7	0
99	Peptide-Based Hydrogels/Organogels: Assembly and Application. , 2018, , 205-226.		2
100	Regulating morphologies and near-infrared photothermal conversion of perylene bisimide <i>via</i> sequence-dependent peptide self-assembly. Chemical Communications, 2018, 54, 2208-2211.	2.2	26
101	Nanodrugs based on peptide-modulated self-assembly: Design, delivery and tumor therapy. Current Opinion in Colloid and Interface Science, 2018, 35, 17-25.	3.4	55
102	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Sheet to αâ€Helix. Angewandte Chemie, 2018, 130, 1553-1558.	1.6	28
103	Crystalline Dipeptide Nanobelts Based on Solid–Solid Phase Transformation Self-Assembly and Their Polarization Imaging of Cells. ACS Applied Materials & Interfaces, 2018, 10, 2368-2376.	4.0	98
104	Chargeâ€Induced Secondary Structure Transformation of Amyloidâ€Derived Dipeptide Assemblies from βâ€Bheet to αâ€Helix. Angewandte Chemie - International Edition, 2018, 57, 1537-1542.	7.2	192
105	Primitive Photosynthetic Architectures Based on Selfâ€Organization and Chemical Evolution of Amino Acids and Metal Ions. Advanced Science, 2018, 5, 1701001.	5.6	35
106	Amino Acid Coordinated Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 755-761.	1.7	58
107	Treatment of different parts of corn stover for high yield and lower polydispersity lignin extraction with high-boiling alkaline solvent. Bioresource Technology, 2018, 249, 737-743.	4.8	32
108	Antitumor Photodynamic Therapy Based on Dipeptide Fibrous Hydrogels with Incorporation of Photosensitive Drugs. ACS Biomaterials Science and Engineering, 2018, 4, 2046-2052.	2.6	82

#	Article	IF	Citations
109	Stimuli-responsive nanoparticles based on co-assembly of naturally-occurring biomacromolecules for in vitro photodynamic therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 795-801.	2.3	68
110	An injectable dipeptide–fullerene supramolecular hydrogel for photodynamic antibacterial therapy. Journal of Materials Chemistry B, 2018, 6, 7335-7342.	2.9	116
111	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie, 2018, 130, 17330-17334.	1.6	29
112	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie - International Edition, 2018, 57, 17084-17088.	7.2	185
113	Chemical Tools and Materials for Biological/Medicinal Applications. Chemistry - an Asian Journal, 2018, 13, 3331-3332.	1.7	11
114	Self-Assembly of Monomeric Hydrophobic Photosensitizers with Short Peptides Forming Photodynamic Nanoparticles with Real-Time Tracking Property and without the Need of Release in Vivo. ACS Applied Materials & Diterfaces, 2018, 10, 28420-28427.	4.0	51
115	Covalent Assembly of Amphiphilic Bolaâ€Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy. Chemistry - an Asian Journal, 2018, 13, 3526-3532.	1.7	20
116	Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10794-10802.	6.6	377
117	Amino-Acid-Mediated Biomimetic Formation of Light-Harvesting Antenna Capable of Hydrogen Evolution. ACS Applied Bio Materials, 2018, 1, 748-755.	2.3	26
118	Self-Assembled Minimalist Multifunctional Theranostic Nanoplatform for Magnetic Resonance Imaging-Guided Tumor Photodynamic Therapy. ACS Nano, 2018, 12, 8266-8276.	7.3	191
119	Tunable Aggregationâ€Induced Emission of Tetraphenylethylene via Short Peptideâ€Directed Selfâ€Assembly. Advanced Materials Interfaces, 2017, 4, 1600183.	1.9	18
120	Biological Photothermal Nanodots Based on Self-Assembly of Peptide–Porphyrin Conjugates for Antitumor Therapy. Journal of the American Chemical Society, 2017, 139, 1921-1927.	6.6	758
121	Selfâ€Assembled Peptide―and Proteinâ€Based Nanomaterials for Antitumor Photodynamic and Photothermal Therapy. Advanced Materials, 2017, 29, 1605021.	11.1	594
122	Self-assembly of biomimetic light-harvesting complexes capable of hydrogen evolution. Green Energy and Environment, 2017, 2, 58-63.	4.7	50
123	Fabrication of Hierarchical Layer-by-Layer Assembled Diamond-based Core-Shell Nanocomposites as Highly Efficient Dye Absorbents for Wastewater Treatment. Scientific Reports, 2017, 7, 44076.	1.6	83
124	Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy. Scientific Reports, 2017, 7, 42978.	1.6	97
125	Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Physical Chemistry Chemical Physics, 2017, 19, 23614-23631.	1.3	48
126	Engineering and delivery of nanocolloids of hydrophobic drugs. Advances in Colloid and Interface Science, 2017, 249, 308-320.	7.0	42

#	Article	IF	Citations
127	Enzyme-immobilized clay nanotube–chitosan membranes with sustainable biocatalytic activities. Physical Chemistry Chemical Physics, 2017, 19, 562-567.	1.3	39
128	Tuning Supramolecular Structure and Functions of Peptide <i>bola </i> -Amphiphile by Solvent Evaporation–Dissolution. ACS Applied Materials & Evaporation⠀ 21390-21396.	4.0	32
129	Selfâ€Assembled Zinc/Cystineâ€Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie, 2017, 129, 7984-7988.	1.6	36
130	Selfâ€Assembled Zinc/Cystineâ€Based Chloroplast Mimics Capable of Photoenzymatic Reactions for Sustainable Fuel Synthesis. Angewandte Chemie - International Edition, 2017, 56, 7876-7880.	7.2	176
131	Directed Selfâ€Assembly: Tunable Aggregationâ€Induced Emission of Tetraphenylethylene via Short Peptideâ€Directed Selfâ€Assembly (Adv. Mater. Interfaces 1/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	0
132	Synergistic in vivo photodynamic and photothermal antitumor therapy based on collagen-gold hybrid hydrogels with inclusion of photosensitive drugs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514, 155-160.	2.3	85
133	Bio-inspired photosystem for green energy. Green Energy and Environment, 2017, 2, 66.	4.7	18
134	Trace Water as Prominent Factor to Induce Peptide Selfâ€Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids. Small, 2017, 13, 1702175.	5.2	49
135	Peptide-Based Supramolecular Chemistry. , 2017, , 135-163.		0
136	Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Biomacromolecules, 2017, 18, 3514-3523.	2.6	148
137	Biomimetic Oxygen-Evolving Photobacteria Based on Amino Acid and Porphyrin Hierarchical Self-Organization. ACS Nano, 2017, 11, 12840-12848.	7.3	26
138	Organized Peptidic Nanostructures as Functional Materials. Biomacromolecules, 2017, 18, 3469-3470.	2.6	21
139	Peptide Supramolecular Self-Assembly:Structural Precise Regulation and Functionalization. Acta Chimica Sinica, 2017, 75, 933.	0.5	14
140	Co-Assembly of Graphene Oxide and Albumin/Photosensitizer Nanohybrids towards Enhanced Photodynamic Therapy. Polymers, 2016, 8, 181.	2.0	120
141	Coâ€Assembly of Heparin and Polypeptide Hybrid Nanoparticles for Biomimetic Delivery and Antiâ€Thrombus Therapy. Small, 2016, 12, 4719-4725.	5.2	64
142	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie - International Edition, 2016, 55, 3036-3039.	7.2	453
143	Peptideâ€Modulated Selfâ€Assembly of Chromophores toward Biomimetic Lightâ€Harvesting Nanoarchitectonics. Advanced Materials, 2016, 28, 1031-1043.	11.1	253
144	An Injectable Selfâ€Assembling Collagen–Gold Hybrid Hydrogel for Combinatorial Antitumor Photothermal/Photodynamic Therapy. Advanced Materials, 2016, 28, 3669-3676.	11.1	700

#	Article	IF	CITATIONS
145	Regulating Cell Apoptosis on Layer-by-Layer Assembled Multilayers of Photosensitizer-Coupled Polypeptides and Gold Nanoparticles. Scientific Reports, 2016, 6, 26506.	1.6	23
146	Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy. ACS Nano, 2016, 10, 5720-5729.	7.3	159
147	Molecular and mesoscale mechanism for hierarchical self-assembly of dipeptide and porphyrin light-harvesting system. Physical Chemistry Chemical Physics, 2016, 18, 16738-16747.	1.3	33
148	Carrier-Free, Chemophotodynamic Dual Nanodrugs via Self-Assembly for Synergistic Antitumor Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13262-13269.	4.0	281
149	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie, 2016, 128, 12691-12695.	1.6	23
150	Dipeptide concave nanospheres based on interfacially controlled self-assembly: from crescent to solid. Physical Chemistry Chemical Physics, 2016, 18, 30926-30930.	1.3	15
151	Peptide self-assembly: thermodynamics and kinetics. Chemical Society Reviews, 2016, 45, 5589-5604.	18.7	760
152	Mimicking Primitive Photobacteria: Sustainable Hydrogen Evolution Based on Peptide–Porphyrin Coâ€Assemblies with a Selfâ€Mineralized Reaction Center. Angewandte Chemie - International Edition, 2016, 55, 12503-12507.	7.2	145
153	Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation. Small, 2016, 12, 5936-5943.	5.2	145
154	Preparation of multicompartment silica-gelatin nanoparticles with self-decomposability as drug containers for cancer therapy in vitro. RSC Advances, 2016, 6, 70064-70071.	1.7	5
155	Drug Delivery: Multitriggered Tumor-Responsive Drug Delivery Vehicles Based on Protein and Polypeptide Coassembly for Enhanced Photodynamic Tumor Ablation (Small 43/2016). Small, 2016, 12, 5935-5935.	5.2	5
156	Injectable Self-Assembled Dipeptide-Based Nanocarriers for Tumor Delivery and Effective In Vivo Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30759-30767.	4.0	59
157	Solvothermally Mediated Selfâ€Assembly of Ultralong Peptide Nanobelts Capable of Optical Waveguiding. Small, 2016, 12, 2575-2579.	5. 2	50
158	Simple Peptideâ€Tuned Selfâ€Assembly of Photosensitizers towards Anticancer Photodynamic Therapy. Angewandte Chemie, 2016, 128, 3088-3091.	1.6	85
159	Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly. ACS Nano, 2016, 10, 2138-2143.	7.3	156
160	Peptideâ€Induced Hierarchical Longâ€Range Order and Photocatalytic Activity of Porphyrin Assemblies. Angewandte Chemie - International Edition, 2015, 54, 500-505.	7.2	164
161	Synthesis of Peptideâ€Based Hybrid Nanobelts with Enhanced Color Emission by Heat Treatment or Water Induction. Chemistry - A European Journal, 2015, 21, 9461-9467.	1.7	30
162	Drug Delivery: Enzyme-Responsive Release of Doxorubicin from Monodisperse Dipeptide-Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro (Adv. Funct. Mater. 8/2015). Advanced Functional Materials, 2015, 25, 1327-1327.	7.8	0

#	Article	IF	CITATIONS
163	Preparation and adsorption capacity evaluation of graphene oxide-chitosan composite hydrogels. Science China Materials, 2015, 58, 811-818.	3.5	70
164	One-Step Nanoengineering of Hydrophobic Photosensitive Drugs for the Photodynamic Therapy. Journal of Nanoscience and Nanotechnology, 2015, 15, 10141-10148.	0.9	7
165	Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment. Scientific Reports, 2015, 5, 11873.	1.6	175
166	Facile and Scalable Preparation of Graphene Oxide-Based Magnetic Hybrids for Fast and Highly Efficient Removal of Organic Dyes. Scientific Reports, 2015, 5, 12451.	1.6	112
167	Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Research Letters, 2015, 10, 931.	3.1	309
168	Hydrothermal synthesis of hierarchical core–shell manganese oxide nanocomposites as efficient dye adsorbents for wastewater treatment. RSC Advances, 2015, 5, 56279-56285.	1.7	82
169	Self-Assembly Reduced Graphene Oxide Nanosheet Hydrogel Fabrication by Anchorage of Chitosan/Silver and Its Potential Efficient Application toward Dye Degradation for Wastewater Treatments. ACS Sustainable Chemistry and Engineering, 2015, 3, 3130-3139.	3.2	202
170	Colloidal Gold–Collagen Protein Core–Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth. ACS Applied Materials & Diterfaces, 2015, 7, 24733-24740.	4.0	88
171	Functional architectures based on self-assembly of bio-inspired dipeptides: Structure modulation and its photoelectronic applications. Advances in Colloid and Interface Science, 2015, 225, 177-193.	7.0	62
172	Enzymeâ€Responsive Release of Doxorubicin from Monodisperse Dipeptideâ€Based Nanocarriers for Highly Efficient Cancer Treatment In Vitro. Advanced Functional Materials, 2015, 25, 1193-1204.	7.8	178
173	Photothermally-Induced Molecular Self-Assembly of Macroscopic Peptide-Inorganic Hybrid Films. Science of Advanced Materials, 2015, 7, 1701-1707.	0.1	5
174	Organogels via Gemini Amphiphile-Graphene Oxide Nanocomposites: Self-Assembly and Symmetry Effect. Science of Advanced Materials, 2015, 7, 1677-1685.	0.1	5
175	Sonoâ€Assembly of Highly Biocompatible Polysaccharide Capsules for Hydrophobic Drug Delivery. Advanced Healthcare Materials, 2014, 3, 825-831.	3.9	20
176	Nanoengineering of Stimuliâ∈Responsive Proteinâ∈Based Biomimetic Protocells as Versatile Drug Delivery Tools. Chemistry - A European Journal, 2014, 20, 6880-6887.	1.7	84
177	Multifunctional Porous Microspheres Based on Peptide–Porphyrin Hierarchical Coâ€Assembly. Angewandte Chemie - International Edition, 2014, 53, 2366-2370.	7.2	161
178	Fabrication of Au@Pt Multibranched Nanoparticles and Their Application to In Situ SERS Monitoring. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17075-17081.	4.0	71
179	Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites. PLoS ONE, 2014, 9, e101620.	1.1	22
180	Highly Loaded Hemoglobin Spheres as Promising Artificial Oxygen Carriers. ACS Nano, 2012, 6, 6897-6904.	7.3	108

#	Article	IF	CITATIONS
181	One-Pot Synthesis of Polypeptide–Gold Nanoconjugates for <i>iin Vitro</i> Gene Transfection. ACS Nano, 2012, 6, 111-117.	7.3	93
182	Templating Assembly of Multifunctional Hybrid Colloidal Spheres. Advanced Materials, 2012, 24, 2663-2667.	11.1	72
183	Templating Assembly of Multifunctional Hybrid Colloidal Spheres (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2662-2662.	11.1	1
184	Selfâ€Assembly of Hexagonal Peptide Microtubes and Their Optical Waveguiding. Advanced Materials, 2011, 23, 2796-2801.	11.1	173
185	Uniaxially Oriented Peptide Crystals for Active Optical Waveguiding. Angewandte Chemie - International Edition, 2011, 50, 11186-11191.	7.2	120
186	Honeycomb Selfâ€Assembled Peptide Scaffolds by the Breath Figure Method. Chemistry - A European Journal, 2011, 17, 4238-4245.	1.7	62
187	Peptide Mesocrystals as Templates to Create an Au Surface with Stronger Surfaceâ€Enhanced Raman Spectroscopic Properties. Chemistry - A European Journal, 2011, 17, 3370-3375.	1.7	59
188	Selfâ€Assembly of Peptideâ€Inorganic Hybrid Spheres for Adaptive Encapsulation of Guests. Advanced Materials, 2010, 22, 1283-1287.	11.1	182
189	Solventâ€Induced Structural Transition of Selfâ€Assembled Dipeptide: From Organogels to Microcrystals. Chemistry - A European Journal, 2010, 16, 3176-3183.	1.7	270
190	Self-assembly and application of diphenylalanine-based nanostructures. Chemical Society Reviews, 2010, 39, 1877.	18.7	880
191	A peony-flower-like hierarchical mesocrystal formed by diphenylalanine. Journal of Materials Chemistry, 2010, 20, 6734.	6.7	78
192	Triggered release of insulin from glucose-sensitive enzyme multilayer shells. Biomaterials, 2009, 30, 2799-2806.	5.7	181
193	Proton Gradients Produced by Glucose Oxidase Microcapsules Containing Motor F _O F ₁ -ATPase for Continuous ATP Biosynthesis. Journal of Physical Chemistry B, 2009, 113, 395-399.	1.2	51
194	Glucose-Sensitive Microcapsules from Glutaraldehyde Cross-Linked Hemoglobin and Glucose Oxidase. Biomacromolecules, 2009, 10, 1212-1216.	2.6	109
195	Formation of PANI tower-shaped hierarchical nanostructures by a limited hydrothermal reaction. Journal of Materials Chemistry, 2009, 19, 3263.	6.7	34
196	Controlled Fabrication of Polyaniline Spherical and Cubic Shells with Hierarchical Nanostructures. ACS Nano, 2009, 3, 3714-3718.	7.3	93
197	Selfâ€Assembly of Peptideâ€Based Colloids Containing Lipophilic Nanocrystals. Small, 2008, 4, 1687-1693.	5.2	67
198	Reversible Transitions between Peptide Nanotubes and Vesicleâ€Like Structures Including Theoretical Modeling Studies. Chemistry - A European Journal, 2008, 14, 5974-5980.	1.7	151

#	Article	IF	CITATIONS
199	Controlled Preparation of MnO ₂ Hierarchical Hollow Nanostructures and Their Application in Water Treatment. Advanced Materials, 2008, 20, 452-456.	11.1	712
200	Motor Protein CF ₀ F ₁ Reconstituted in Lipidâ€Coated Hemoglobin Microcapsules for ATP Synthesis. Advanced Materials, 2008, 20, 601-605.	11.1	83
201	Microcapsules Containing a Biomolecular Motor for ATP Biosynthesis. Advanced Materials, 2008, 20, 2933-2937.	11.1	58
202	Organogels Based on Self-Assembly of Diphenylalanine Peptide and Their Application To Immobilize Quantum Dots. Chemistry of Materials, 2008, 20, 1522-1526.	3.2	238
203	Preparation of polymer-coated mesoporous silica nanoparticles used for cellular imaging by a "graft-from―method. Journal of Materials Chemistry, 2008, 18, 5731.	6.7	132
204	Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and Biophysical Research Communications, 2007, 354, 357-362.	1.0	94
205	Glycolipid patterns supported by human serum albumin for E. coli recognition. Biochemical and Biophysical Research Communications, 2007, 358, 424-428.	1.0	9
206	Encapsulated photosensitive drugs by biodegradable microcapsules to incapacitate cancer cells. Journal of Materials Chemistry, 2007, 17, 4018.	6.7	99
207	Synthesis and <i>in vitro</i> Behavior of Multivalent Cationic Lipopeptide for DNA Delivery and Release in HeLa Cells. Bioconjugate Chemistry, 2007, 18, 1735-1738.	1.8	23
208	Transition of Cationic Dipeptide Nanotubes into Vesicles and Oligonucleotide Delivery. Angewandte Chemie - International Edition, 2007, 46, 2431-2434.	7.2	306
209	Adenosine Triphosphate Biosynthesis Catalyzed by F _o F ₁ ATP Synthase Assembled in Polymer Microcapsules. Angewandte Chemie - International Edition, 2007, 46, 6996-7000.	7.2	77
210	Adenosine Triphosphate Biosynthesis Catalyzed by F _o F ₁ ATP Synthase Assembled in Polymer Microcapsules. Angewandte Chemie, 2007, 119, 7126-7130.	1.6	21
211	Thermosensitive Nanostructures Comprising Gold Nanoparticles Grafted with Block Copolymers. Advanced Functional Materials, 2007, 17, 3134-3140.	7.8	171
212	Preparation and rheological properties of oil–water–coal triplex synfuel using petroleum sulfonate as the dispersants. Fuel Processing Technology, 2007, 88, 221-225.	3.7	14