
Cristina M. Sena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2820727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methods to evaluate vascular function: a crucial approach towards predictive, preventive, and personalised medicine. EPMA Journal, 2022, 13, 209-235.	6.1	10
2	Perivascular adipose tissue. , 2022, , 71-75.		0
3	Omentin: A novel therapeutic approach for the treatment of endothelial dysfunction in type 2 diabetes. Free Radical Biology and Medicine, 2021, 162, 233-242.	2.9	22
4	Multiparticulate Systems of Ezetimibe Micellar System and Atorvastatin Solid Dispersion Efficacy of Low-Dose Ezetimibe/Atorvastatin on High-Fat Diet-Induced Hyperlipidemia and Hepatic Steatosis in Diabetic Rats. Pharmaceutics, 2021, 13, 421.	4.5	4
5	Atherosclerotic Process in Seroreverter Children and Adolescents Exposed to Fetal Antiretroviral Therapy. Current HIV Research, 2021, 19, 216-224.	0.5	1
6	Editorial: Oxidative Stress Revisited—Major Role in Vascular Diseases, Volume II. Frontiers in Physiology, 2021, 12, 826129.	2.8	0
7	Luteolin Improves Perivascular Adipose Tissue Profile and Vascular Dysfunction in Goto-Kakizaki Rats. International Journal of Molecular Sciences, 2021, 22, 13671.	4.1	3
8	Increased inflammation, oxidative stress and a reduction in antioxidant defense enzymes in perivascular adipose tissue contribute to vascular dysfunction in type 2 diabetes. Free Radical Biology and Medicine, 2020, 146, 264-274.	2.9	41
9	Myocardial peak systolic velocity—a tool for cardiac screening of HIV-exposed uninfected children. European Journal of Pediatrics, 2020, 179, 395-404.	2.7	3
10	Perivascular adipose tissue in age-related vascular disease. Ageing Research Reviews, 2020, 59, 101040.	10.9	46
11	Epicardial adipose tissue: An important therapeutic target. Revista Portuguesa De Cardiologia, 2019, 38, 425-426.	0.5	3
12	Editorial: Oxidative Stress Revisited—Major Role in Vascular Diseases. Frontiers in Physiology, 2019, 10, 788.	2.8	2
13	Epicardial adipose tissue: An important therapeutic target. Revista Portuguesa De Cardiologia (English) Tj ETQq1	1 0.7843 0.2	14 rgBT /Ov∈
14	Vascular Oxidative Stress: Impact and Therapeutic Approaches. Frontiers in Physiology, 2018, 9, 1668.	2.8	158
15	Lipoic Acid Prevents High-Fat Diet-Induced Hepatic Steatosis in Goto Kakizaki Rats by Reducing Oxidative Stress Through Nrf2 Activation. International Journal of Molecular Sciences, 2018, 19, 2706.	4.1	28
16	Adiponectin improves endothelial function in mesenteric arteries of rats fed a highâ€fat diet: role of perivascular adipose tissue. British Journal of Pharmacology, 2017, 174, 3514-3526.	5.4	68
17	Cerebrovascular Disease: Consequences of Obesity-Induced Endothelial Dysfunction. Advances in Neurobiology, 2017, 19, 163-189.	1.8	16
18	The Sulforaphane and pyridoxamine supplementation normalize endothelial dysfunction associated with type 2 diabetes. Scientific Reports, 2017, 7, 14357.	3.3	39

Cristina M. Sena

#	Article	IF	CITATIONS
19	Methylglyoxal in Metabolic Disorders: Facts, Myths, and Promises. Medicinal Research Reviews, 2017, 37, 368-403.	10.5	67
20	53 rd EASD Annual Meeting of the European Association for the Study of Diabetes. Diabetologia, 2017, 60, 1-608.	6.3	56
21	Dyslipidemia and cardiovascular changes in children. Current Opinion in Cardiology, 2016, 31, 95-100.	1.8	33
22	Childhood adiposity: being male is a potential cardiovascular risk factor. European Journal of Pediatrics, 2016, 175, 63-69.	2.7	11
23	Circulating endothelial progenitor cells in obese children and adolescents. Jornal De Pediatria (Versão Em Português), 2015, 91, 560-566.	0.2	0
24	Circulating endothelial progenitor cells in obese children and adolescents. Jornal De Pediatria, 2015, 91, 560-566.	2.0	9
25	Obesidade: Paradigma da Disfunção Endotelial em Idade Pediátrica. Acta Medica Portuguesa, 2015, 28, 233.	0.4	2
26	Type 2 Diabetes Aggravates Alzheimer's Disease-Associated Vascular Alterations of the Aorta in Mice. Journal of Alzheimer's Disease, 2015, 45, 127-138.	2.6	10
27	Insulin Resistance, Dyslipidemia and Cardiovascular Changes in a Group of Obese Children. Arquivos Brasileiros De Cardiologia, 2014, 104, 266-73.	0.8	30
28	Pro-inflammatory triggers in childhood obesity: Correlation between leptin, adiponectin and high-sensitivity C-reactive protein in a group of obese Portuguese children. Revista Portuguesa De Cardiologia, 2014, 33, 691-697.	0.5	18
29	Pro-inflammatory triggers in childhood obesity: Correlation between leptin, adiponectin and high-sensitivity C-reactive protein in a group of obese Portuguese children. Revista Portuguesa De Cardiologia (English Edition), 2014, 33, 691-697.	0.2	8
30	Atorvastatin-mediated protection of the retina in a model of diabetes with hyperlipidemia. Canadian Journal of Physiology and Pharmacology, 2014, 92, 1037-1043.	1.4	11
31	Long-term globular adiponectin administration improves adipose tissue dysmetabolism in high-fat diet-fed Wistar rats. Archives of Physiology and Biochemistry, 2014, 120, 147-157.	2.1	14
32	Effects of methylglyoxal and pyridoxamine in rat brain mitochondria bioenergetics and oxidative status. Journal of Bioenergetics and Biomembranes, 2014, 46, 347-355.	2.3	33
33	P759Novel therapeutic approach to target endothelial dysfunction in type 2 diabetes. Cardiovascular Research, 2014, 103, S139.2-S139.	3.8	1
34	Advanced glycation end products and diabetic nephropathy: a comparative study using diabetic and normal rats with methylglyoxal-induced glycation. Journal of Physiology and Biochemistry, 2014, 70, 173-184.	3.0	30
35	Effects of Atorvastatin and Insulin in Vascular Dysfunction Associated With Type 2 Diabetes. Physiological Research, 2014, 63, 189-197.	0.9	10
36	Common mechanisms of dysfunctional adipose tissue and obesityâ€related cancers. Diabetes/Metabolism Research and Reviews, 2013, 29, 285-295.	4.0	34

CRISTINA M. SENA

#	Article	IF	CITATIONS
37	Methylglyoxal, obesity, and diabetes. Endocrine, 2013, 43, 472-484.	2.3	137
38	Endothelial dysfunction — A major mediator of diabetic vascular disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 2216-2231.	3.8	601
39	Methylglyoxal chronic administration promotes diabetes-like cardiac ischaemia disease in Wistar normal rats. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 1223-1230.	2.6	30
40	Diabetes Mellitus: New Challenges and Innovative Therapies. Advances in Predictive, Preventive and Personalised Medicine, 2013, , 29-87.	0.6	5
41	Reduction of Methylglyoxal-Induced Glycation by Pyridoxamine Improves Adipose Tissue Microvascular Lesions. Journal of Diabetes Research, 2013, 2013, 1-9.	2.3	27
42	Subspecialty Poster Sessions. European Journal of Clinical Investigation, 2013, 43, 97-106.	3.4	0
43	Reverse myocardial effects of intermedin in pressureâ€overloaded hearts: role of endothelial nitric oxide synthase activity. Journal of Physiology, 2013, 591, 677-687.	2.9	5
44	Pyridoxamine Reverts Methylglyoxalâ€induced Impairment of Survival Pathways During Heart Ischemia. Cardiovascular Therapeutics, 2013, 31, e79-85.	2.5	20
45	Intermedin elicits a negative inotropic effect in rat papillary muscles mediated by endothelial-derived nitric oxide. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H1131-H1137.	3.2	9
46	Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Archives of Physiology and Biochemistry, 2012, 118, 58-68.	2.1	45
47	Methylglyoxal promotes oxidative stress and endothelial dysfunction. Pharmacological Research, 2012, 65, 497-506.	7.1	174
48	Metformin restores endothelial function in aorta of diabetic rats. British Journal of Pharmacology, 2011, 163, 424-437.	5.4	144
49	Diabetes mellitus: new challenges and innovative therapies. EPMA Journal, 2010, 1, 138-163.	6.1	48
50	MitoTeas: Vaccinium myrtillus and Geranium robertianum decoctions improve diabetic Goto–Kakizaki rats hepatic mitochondrial oxidative phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 2010, 1797, 79-80.	1.0	1
51	Methylglyoxalâ€induced imbalance in the ratio of vascular endothelial growth factor to angiopoietin 2 secreted by retinal pigment epithelial cells leads to endothelial dysfunction. Experimental Physiology, 2010, 95, 955-970.	2.0	61
52	"MitoTea": Geranium robertianum L. decoctions decrease blood glucose levels and improve liver mitochondrial oxidative phosphorylation in diabetic Goto-Kakizaki rats Acta Biochimica Polonica, 2010, 57, .	0.5	6
53	Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-at diet. Physiological Research, 2009, 58, 203-209.	0.9	35
54	Effects of αâ€lipoic acid on endothelial function in aged diabetic and highâ€fat fed rats. British Journal of Pharmacology, 2008, 153, 894-906.	5.4	88

Cristina M. Sena

#	Article	IF	CITATIONS
55	Supplementation of coenzyme Q10 and α-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutrition Research, 2008, 28, 113-121.	2.9	54
56	The Effect of Soybean Oil on Glycaemic Control in Goto-Kakizaki Rats,an Animal Model of Type 2 Diabetes. Medicinal Chemistry, 2008, 4, 293-297.	1.5	4
57	Teaching muscle physiology to medical students. FASEB Journal, 2008, 22, 177-177.	0.5	0
58	Lipoic acid prevents highâ€fat dietâ€induced hepatic steatosis in Goto Kakizaki rats. FASEB Journal, 2008, 22, 134-134.	0.5	0
59	Sources ofÂendogenous glucose production inÂtheÂGoto–Kakizaki diabetic rat. Diabetes and Metabolism, 2007, 33, 296-302.	2.9	39
60	Soybean oil treatment impairs glucose-stimulated insulin secretion and changes fatty acid composition of normal and diabetic islets. Acta Diabetologica, 2007, 44, 121-130.	2.5	20
61	Endothelial dysfunction in type 2 diabetes: effect of antioxidants. Revista Portuguesa De Cardiologia, 2007, 26, 609-19.	0.5	14
62	Insulin Attenuates Diabetes-Related Mitochondrial Alterations: A Comparative Study. Medicinal Chemistry, 2006, 2, 299-308.	1.5	45
63	Mitochondrial Function Is Not Affected by Renal Morphological Changes in Diabetic Goto-Kakizaki Rat. Toxicology Mechanisms and Methods, 2005, 15, 253-261.	2.7	3
64	Insulin protects against amyloid β-peptide toxicity in brain mitochondria of diabetic rats. Neurobiology of Disease, 2005, 18, 628-637.	4.4	82
65	CoQ10 therapy attenuates amyloid β-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Experimental Neurology, 2005, 196, 112-119.	4.1	82
66	Gliclazide improves anti-oxidant status and nitric oxide-mediated vasodilation in Type 2 diabetes. Diabetic Medicine, 2002, 19, 752-757.	2.3	64
67	Differential Regulation of Histamine- and Bradykinin-Stimulated Phospholipase C in Adrenal Chromaffin Cells: Evidence for Involvement of Different Protein Kinase C Isoforms. Journal of Neurochemistry, 2002, 66, 1086-1094.	3.9	20
68	Isoform-specific inhibition of voltage-sensitive Ca2+channels by protein kinase C in adrenal chromaffin cells. FEBS Letters, 2001, 492, 146-150.	2.8	14
69	Regulation of Ca2+ influx by a protein kinase C activator in chromaffin cells: differential role of P/Q- and L-type Ca2+ channels. European Journal of Pharmacology, 1999, 366, 281-292.	3.5	14
70	Regulation of bradykinin responses by PKC Îμ and histamine responses by PKC α in adrenal chromaffin cells. Biochemical Society Transactions, 1995, 23, 424S-424S.	3.4	2
71	Protein kinase C activator inhibits voltage-sensitive Ca2+channels and catecholamine secretion in adrenal chromaffin cells. FEBS Letters, 1995, 359, 137-141.	2.8	21
72	A Toxin Fraction (FTX) from the Funnel-Web Spider Poison Inhibits Dihydropyridine-Insensitive Ca2+Channels Coupled to Catecholamine Release in Bovine Adrenal Chromaffin Cells. Journal of Neurochemistry, 1993, 60, 908-913.	3.9	29

73 Endothelial Dysfunction in Type 2 Diabetes: Targeting Inflammation. , 0, , .	