Axel Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2820503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 6196-6200.	7.1	4,373
2	Asymmetric paralog evolution between the "cryptic―gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4. Scientific Reports, 2019, 9, 3136.	3.3	1,637
3	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	27.8	1,139
4	From 2R to 3R: evidence for a fishâ€specific genome duplication (FSGD). BioEssays, 2005, 27, 937-945.	2.5	929
5	The evolutionary significance of ancient genome duplications. Nature Reviews Genetics, 2009, 10, 725-732.	16.3	919
6	Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 1990, 347, 550-553.	27.8	891
7	The genomic substrate for adaptive radiation in African cichlid fish. Nature, 2014, 513, 375-381.	27.8	874
8	SHAPE ANALYSIS OF SYMMETRIC STRUCTURES: QUANTIFYING VARIATION AMONG INDIVIDUALS AND ASYMMETRY. Evolution; International Journal of Organic Evolution, 2002, 56, 1909-1920.	2.3	804
9	Genome Duplication, a Trait Shared by 22,000 Species of Ray-Finned Fish. Genome Research, 2003, 13, 382-390.	5.5	787
10	Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Current Opinion in Cell Biology, 1999, 11, 699-704.	5.4	738
11	The African coelacanth genome provides insights into tetrapod evolution. Nature, 2013, 496, 311-316.	27.8	612
12	Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genetics, 2013, 45, 415-421.	21.4	588
13	Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature, 2006, 439, 719-723.	27.8	579
14	The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics, 2016, 48, 427-437.	21.4	545
15	Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish. Journal of Molecular Evolution, 2004, 59, 190-203.	1.8	533
16	Major events in the genome evolution of vertebrates: Paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1638-1643.	7.1	489
17	Comparative genomics provides evidence for an ancient genome duplication event in fish. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1661-1679.	4.0	450
18	Transgenerational impact of intimate partner violence on methylation in the promoter of the glucocorticoid receptor. Translational Psychiatry, 2011, 1, e21-e21.	4.8	433

#	Article	IF	CITATIONS
19	Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends in Ecology and Evolution, 1993, 8, 279-284.	8.7	393
20	PHENOTYPIC PLASTICITY AND HETEROCHRONY IN <i>CICHLASOMA MANAGUENSE</i> (PISCES, CICHLIDAE) AND THEIR IMPLICATIONS FOR SPECIATION IN CICHLID FISHES. Evolution; International Journal of Organic Evolution, 1987, 41, 1357-1369.	2.3	380
21	Origin, Spread and Demography of the Mycobacterium tuberculosis Complex. PLoS Pathogens, 2008, 4, e1000160.	4.7	378
22	Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Molecular Biology and Evolution, 1996, 13, 933-942.	8.9	371
23	Adaptation in the age of ecological genomics: insights from parallelism and convergence. Trends in Ecology and Evolution, 2011, 26, 298-306.	8.7	366
24	Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa. Science, 2003, 300, 325-329.	12.6	357
25	Evidence of Selection upon Genomic GC-Content in Bacteria. PLoS Genetics, 2010, 6, e1001107.	3.5	355
26	Mitochondrial cytochrome b: evolution and structure of the protein. Biochimica Et Biophysica Acta - Bioenergetics, 1993, 1143, 243-271.	1.0	328
27	Genetic divergence, speciation and morphological stasis in a lineage of African cichlid fishes. Nature, 1992, 358, 578-581.	27.8	318
28	Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evolutionary Biology, 2005, 5, 17.	3.2	313
29	Timing of Genome Duplications Relative to the Origin of the Vertebrates: Did Cyclostomes Diverge before or after?. Molecular Biology and Evolution, 2008, 26, 47-59.	8.9	281
30	Multiple overseas dispersal in amphibians. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 2435-2442.	2.6	276
31	More genes in fish?. BioEssays, 1998, 20, 511-515.	2.5	264
32	Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny. Nature, 1994, 368, 539-542.	27.8	262
33	Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nature Ecology and Evolution, 2017, 1, 1370-1378.	7.8	247
34	Phylogeny of the Lake Tanganyika Cichlid Species Flock and Its Relationship to the Central and East African Haplochromine Cichlid Fish Faunas. Systematic Biology, 2002, 51, 113-135.	5.6	243
35	Initial Diversification of Living Amphibians Predated the Breakup of Pangaea. American Naturalist, 2005, 165, 590-599.	2.1	228
36	Shortcomings of the cytochrome b gene as a molecular marker. Trends in Ecology and Evolution, 1994, 9, 278-280.	8.7	216

#	Article	IF	CITATIONS
37	Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proceedings of the Royal Society B: Biological Sciences, 1996, 263, 1589-1598.	2.6	215
38	Origin of tetrapods inferred from their mitochondrial DNA affiliation to lungfish. Journal of Molecular Evolution, 1990, 31, 359-364.	1.8	206
39	Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene, 2000, 246, 1-8.	2.2	204
40	Rapid evolution and selection inferred from the transcriptomes of sympatric crater lake cichlid fishes. Molecular Ecology, 2010, 19, 197-211.	3.9	203
41	GLOBAL SURVEY OF MITOCHONDRIAL DNA SEQUENCES IN THE THREESPINE STICKLEBACK: EVIDENCE FOR RECENT MIGRATIONS. Evolution; International Journal of Organic Evolution, 1994, 48, 608-622.	2.3	199
42	Complete mitochondrial genome suggests diapsid affinities of turtles. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 14226-14231.	7.1	194
43	The species flocks of East African cichlid fishes: recent advances in molecular phylogenetics and population genetics. Die Naturwissenschaften, 2004, 91, 277-90.	1.6	191
44	Recent Advances in the (Molecular) Phylogeny of Vertebrates. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 311-338.	8.3	190
45	Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Marine Biology, 2000, 136, 69-77.	1.5	189
46	Revised phylogeny of whales suggested by mitochondrial ribosomal DNA sequences. Nature, 1993, 361, 346-348.	27.8	187
47	Independent adaptation to riverine habitats allowed survival of ancient cetacean lineages. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11343-11347.	7.1	186
48	The seahorse genome and the evolution of its specialized morphology. Nature, 2016, 540, 395-399.	27.8	186
49	Closing of the Tethys Sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes:) Tj ETQq1 1 0.784314	rgB <u>T</u> /Over	lock 10 Tf 50
50	Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10230-10235.	7.1	181
51	The Cytochrome b Gene as a Phylogenetic Marker: The Limits of Resolution for Analyzing Relationships Among Cichlid Fishes. Journal of Molecular Evolution, 2001, 53, 89-103.	1.8	180
52	The Radiation of Characiform Fishes and the Limits of Resolution of Mitochondrial Ribosomal DNA Sequences. Systematic Biology, 1997, 46, 75-100.	5.6	177
53	THE DYNAMICS OF MALE BROODING, MATING PATTERNS, AND SEX ROLES IN PIPEFISHES AND SEAHORSES (FAMILY SYNGNATHIDAE). Evolution; International Journal of Organic Evolution, 2003, 57, 1374-1386.	2.3	176
54	Hox clusters as models for vertebrate genome evolution. Trends in Genetics, 2005, 21, 421-424.	6.7	173

#	Article	IF	CITATIONS
55	Phenotypic Plasticity and Heterochrony in Cichlasoma managuense (Pisces, Chichlidae) and their Implications for Speciation in Cichlid Fishes. Evolution; International Journal of Organic Evolution, 1987, 41, 1357.	2.3	172
56	The Ghost of Selection Past: Rates of Evolution and Functional Divergence of Anciently Duplicated Genes. Journal of Molecular Evolution, 2001, 53, 436-446.	1.8	172
57	Ecological and evolutionary consequences of the trophic polymorphism in Cichlasoma citrinellum (Pisces: Cichlidae). Biological Journal of the Linnean Society, 1990, 39, 279-299.	1.6	171
58	Homology and developmental genes. Trends in Genetics, 1997, 13, 432-433.	6.7	169
59	Nuclear protein-coding genes support lungfish and not the coelacanth as the closest living relatives of land vertebrates. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4900-4905.	7.1	168
60	A novel song parameter correlates with extra-pair paternity and reflects male longevity. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1479-1485.	2.6	162
61	Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1763-1782.	4.0	162
62	Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nature Communications, 2018, 9, 3159.	12.8	162
63	A phylogenetic and biogeographic perspective on the evolution of poeciliid fishes. Molecular Phylogenetics and Evolution, 2007, 43, 986-998.	2.7	160
64	How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Molecular Ecology, 2017, 26, 330-350.	3.9	160
65	The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nature Ecology and Evolution, 2020, 4, 841-852.	7.8	159
66	Male Pregnancy in Seahorses and Pipefishes (Family Syngnathidae): Rapid Diversification of Paternal Brood Pouch Morphology Inferred From a Molecular Phylogeny. , 2001, 92, 159-166.		157
67	Genome duplication, divergent resolution and speciation. Trends in Genetics, 2001, 17, 299-301.	6.7	157
68	Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nature Communications, 2014, 5, 5168.	12.8	157
69	Space, sympatry and speciation. Journal of Evolutionary Biology, 2009, 22, 2332-2341.	1.7	152
70	Natural hybridization in primates: One evolutionary mechanism. Zoology, 2006, 109, 261-276.	1.2	151
71	GEOMETRIC MORPHOMETRIC ANALYSES PROVIDE EVIDENCE FOR THE ADAPTIVE CHARACTER OF THE TANGANYIKAN CICHLID FISH RADIATIONS. Evolution; International Journal of Organic Evolution, 2007, 61, 560-578.	2.3	151
72	Limitations of Metazoan 18S rRNA Sequence Data: Implications for Reconstructing a Phylogeny of the Animal Kingdom and Inferring the Reality of the Cambrian Explosion. Journal of Molecular Evolution, 1998, 47, 394-405.	1.8	150

#	Article	IF	CITATIONS
73	Novel Relationships Among Ten Fish Model Species Revealed Based on a Phylogenomic Analysis Using ESTs. Journal of Molecular Evolution, 2006, 62, 772-784.	1.8	150
74	Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evolutionary Biology, 2011, 11, 116.	3.2	147
75	Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. Journal of Molecular Evolution, 1996, 42, 169-182.	1.8	144
76	Molecular Phylogeny of European Muroid Rodents Based on Complete Cytochrome b Sequences. Molecular Phylogenetics and Evolution, 2000, 16, 37-47.	2.7	138
77	Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups. Molecular Phylogenetics and Evolution, 2007, 43, 567-582.	2.7	138
78	Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2541-2549.	2.6	137
79	An Updated and Comprehensive rRNA Phylogeny of (Crown) Eukaryotes Based on Rate-Calibrated Evolutionary Distances. Journal of Molecular Evolution, 2000, 51, 565-576.	1.8	136
80	Phylogeny and Comparative Substitution Rates of Frogs Inferred from Sequences of Three Nuclear Genes. Molecular Biology and Evolution, 2004, 21, 1188-1200.	8.9	136
81	Unusual mitochondrial DNA polymorphism in two local populations of blue tit <i>Parus caeruleus</i> . Molecular Ecology, 1992, 1, 27-36.	3.9	135
82	Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data Molecular Biology and Evolution, 1995, 12, 298-318.	8.9	134
83	Cost of morphological specialization: feeding performance of the two morphs in the trophically polymorphic cichlid fish, Cichlasoma citrinellum. Oecologia, 1989, 80, 431-436.	2.0	132
84	Case studies and mathematical models of ecological speciation. 1. Cichlids in a crater lake. Molecular Ecology, 2007, 16, 2893-2909.	3.9	132
85	Giant lungfish genome elucidates the conquest of land by vertebrates. Nature, 2021, 590, 284-289.	27.8	132
86	Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science, 2018, 362, 457-460.	12.6	131
87	Evolutionary Conservation of Regulatory Elements in Vertebrate <i>Hox</i> Gene Clusters. Genome Research, 2003, 13, 1111-1122.	5.5	130
88	The evolutionary position of turtles revised. Die Naturwissenschaften, 2001, 88, 193-200.	1.6	128
89	Ancient lakes as evolutionary reservoirs: evidence from the thalassoid gastropods of Lake Tanganyika. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 529-536.	2.6	128
90	Mitochondrial DNA Phylogeny of the Family Cichlidae: Monophyly and Fast Molecular Evolution of the Neotropical Assemblage. Journal of Molecular Evolution, 1999, 48, 703-711.	1.8	127

#	Article	IF	CITATIONS
91	Total evidence: Molecules, morphology, and the phylogenetics of cichlid fishes. , 2000, 288, 76-92.		125
92	The Complete Nucleotide Sequence of the Mitochondrial Genome of the Lungfish (<i>Protopterus) Tj ETQq0 0 142, 1249-1263.</i>	0 rgBT /Ov 2.9	erlock 10 Tf 5 124
93	Incipient speciation in sympatric Nicaraguan crater lake cichlid fishes: sexual selection versus ecological diversification. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 2133-2141.	2.6	123
94	Nuclear gene phylogeny of narrow-mouthed toads (Family: Microhylidae) and a discussion of competing hypotheses concerning their biogeographical origins. Molecular Phylogenetics and Evolution, 2007, 44, 1017-1030.	2.7	121
95	COLOR ASSORTATIVE MATING CONTRIBUTES TO SYMPATRIC DIVERGENCE OF NEOTROPICAL CICHLID FISH. Evolution; International Journal of Organic Evolution, 2009, 63, 2750-2757.	2.3	120
96	Cichlids of the Rift Lakes. Scientific American, 1999, 280, 64-69.	1.0	119
97	Genomic incompatibilities in the diploid and tetraploid offspring of the goldfish × common carp cross. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1327-1332.	7.1	119
98	The Complete Mitochondrial DNA Sequence of the Bichir (<i>Polypterus ornatipinnis</i>), a Basal Ray-Finned Fish: Ancient Establishment of the Consensus Vertebrate Gene Order. Genetics, 1996, 144, 1165-1180.	2.9	119
99	The Midas cichlid species complex: incipient sympatric speciation in Nicaraguan cichlid fishes?. Molecular Ecology, 2004, 13, 2061-2076.	3.9	116
100	Contrasting signatures of genomic divergence during sympatric speciation. Nature, 2020, 588, 106-111.	27.8	115
101	Searching for the Closest Living Relative(s) of Tetrapods Through Evolutionary Analysis of Mitochondrial and Nuclear Data. Molecular Biology and Evolution, 1998, 15, 506-517.	8.9	114
102	Evolutionary relationships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5449-5454.	7.1	112
103	Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biology, 2010, 8, 60.	3.8	112
104	The evolutionary history of <i><scp>X</scp>iphophorus</i> fish and their sexually selected sword: a genomeâ€wide approach using restriction siteâ€associated <scp>DNA</scp> sequencing. Molecular Ecology, 2013, 22, 2986-3001.	3.9	112
105	Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1772-1776.	7.1	110
106	Morphometrics and allometry in the trophically polymorphic cichlid fish,Cichlasoma citrinellum: Alternative adaptations and ontogenetic changes in shape. Journal of Zoology, 1990, 221, 237-260.	1.7	110
107	The Complete DNA Sequence of the Mitochondrial Genome of a "Living Fossil,―the Coelacanth (<i>Latimeria chalumnae</i>). Genetics, 1997, 146, 995-1010.	2.9	107
108	Population structure in two sympatric species of the Lake Tanganyika cichlid tribe Eretmodini: evidence for introgression. Molecular Ecology, 2001, 10, 1207-1225.	3.9	105

#	Article	IF	CITATIONS
109	Body shape variation in cichlid fishes of the Amphilophus citrinellus species complex. Biological Journal of the Linnean Society, 2003, 80, 397-408.	1.6	105
110	Three rounds (1R/2R/3R) of genome duplications and the evolution of the glycolytic pathway in vertebrates. BMC Biology, 2006, 4, 16.	3.8	105
111	Hybrid origin of a swordtail species (Teleostei: Xiphophorus clemenciae) driven by sexual selection. Molecular Ecology, 2006, 15, 721-730.	3.9	105
112	Post-mating clutch piracy in an amphibian. Nature, 2004, 431, 305-308.	27.8	104
113	Taxl: a software tool for DNA barcoding using distance methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 1975-1980.	4.0	104
114	On the origin of and phylogenetic relationships among living amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7380-7383.	7.1	103
115	Mitochondrial DNA sequences and multiple data sets: a phylogenetic study of phytophagous beetles (Chrysomelidae: Ophraella) Molecular Biology and Evolution, 1995, 12, 627-40.	8.9	102
116	Epigenetic modifications of the glucocorticoid receptor gene are associated with the vulnerability to psychopathology in childhood maltreatment. Translational Psychiatry, 2015, 5, e571-e571.	4.8	102
117	The evolution and maintenance of Hox gene clusters in vertebrates and the teleost-specific genome duplication. International Journal of Developmental Biology, 2009, 53, 765-773.	0.6	101
118	Many genes in fish have species-specific asymmetric rates of molecular evolution. BMC Genomics, 2006, 7, 20.	2.8	100
119	Genomic architecture of ecologically divergent body shape in a pair of sympatric crater lake cichlid fishes. Molecular Ecology, 2014, 23, 1828-1845.	3.9	99
120	What, if Anything, is a Tilapia?—Mitochondrial ND2 Phylogeny of Tilapiines and the Evolution of Parental Care Systems in the African Cichlid Fishes. Molecular Biology and Evolution, 2002, 19, 865-883.	8.9	98
121	Multispecies Outcomes of Sympatric Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids. PLoS Genetics, 2016, 12, e1006157.	3.5	97
122	New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Molecular Ecology, 2004, 13, 3763-3774.	3.9	96
123	Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Animal Conservation, 2005, 8, 297-308.	2.9	96
124	Mitochondrial phylogeny of the endemic mouthbrooding lineages of cichlid fishes from Lake Tanganyika in eastern Africa Molecular Biology and Evolution, 1993, 10, 751-68.	8.9	95
125	Historical Biogeography of the New-World Pupfish Genus Cyprinodon (Teleostei: Cyprinodontidae). Copeia, 2005, 2005, 320-339.	1.3	95
126	Induction and prepatterning of the zebrafish pectoral fin bud requires axial retinoic acid signaling. Development (Cambridge), 2006, 133, 2649-2659.	2.5	94

#	Article	IF	CITATIONS
127	Adaptive sequence evolution in a color gene involved in the formation of the characteristic egg-dummies of male haplochromine cichlid fishes. BMC Biology, 2007, 5, 51.	3.8	93
128	Mitochondrial phylogeny of the Lamprologini, the major substrate spawning lineage of cichild fishes from Lake Tanganyika in eastern Africa Molecular Biology and Evolution, 1994, 11, 691-703.	8.9	92
129	Kin-structured subpopulations in Eurasian perch (Perca fluviatilis L.). Heredity, 2001, 86, 213-221.	2.6	92
130	The evolution of copulatory organs, internal fertilization, placentae and viviparity in killifishes (Cyprinodontiformes) inferred from a DNA phylogeny of the tyrosine kinase gene X-src. Proceedings of the Royal Society B: Biological Sciences, 1993, 254, 153-162.	2.6	90
131	Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evolutionary Biology, 2010, 10, 326.	3.2	90
132	Molecules, fossils, and the origin of tetrapods. Journal of Molecular Evolution, 1992, 35, 102-13.	1.8	89
133	Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain. Developmental Biology, 2004, 271, 119-129.	2.0	89
134	The phylogenetic position of the zebrafish (Danio rerio) , a model system in developmental biology: an invitation to the comparative method. Proceedings of the Royal Society B: Biological Sciences, 1993, 252, 231-236.	2.6	88
135	Homology evolving. Trends in Ecology and Evolution, 2001, 16, 434-440.	8.7	88
136	Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes Molecular Biology and Evolution, 1994, 11, 939-48.	8.9	86
137	Mitochondrial phylogeography of rock-dwelling cichlid fishes reveals evolutionary influence of historical lake level fluctuations of Lake Tanganyika, Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 1996, 351, 797-805.	4.0	86
138	Shaping development through mechanical strain: the transcriptional basis of dietâ€induced phenotypic plasticity in a cichlid fish. Molecular Ecology, 2013, 22, 4516-4531.	3.9	85
139	Vertebrate genomics: More fishy tales about Hox genes. Current Biology, 1999, 9, R210-R213.	3.9	83
140	Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genomics, 2013, 14, 171.	2.8	83
141	Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish. Molecular Ecology, 2014, 23, 4511-4526.	3.9	83
142	Pleistocene desiccation in East Africa bottlenecked but did not extirpate the adaptive radiation of Lake Victoria haplochromine cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13404-13409.	7.1	82
143	Parsing parallel evolution: ecological divergence and differential gene expression in the adaptive radiations of thickâ€lipped <scp>M</scp> idas cichlid fishes from <scp>N</scp> icaragua. Molecular Ecology, 2013, 22, 650-669.	3.9	82
144	A HISTORY OF HOST ASSOCIATIONS AND EVOLUTIONARY DIVERSIFICATION FOR <i>OPHRAELLA</i> (COLEOPTERA: CHRYSOMELIDAE): NEW EVIDENCE FROM MITOCHONDRIAL DNA. Evolution; International Journal of Organic Evolution, 1995, 49, 1008-1017.	2.3	81

#	Article	IF	CITATIONS
145	Multilocus Phylogeny of Chichlid Fishes (Pisces: Perciformes): Evolutionary Comparison of Microsatellite and Single-Copy Nuclear Loci. Molecular Biology and Evolution, 1998, 15, 798-808.	8.9	81
146	Evolution of Receptors for Growth Hormone and Somatolactin in Fish and Land Vertebrates: Lessons from the Lungfish and Sturgeon Orthologues. Journal of Molecular Evolution, 2007, 65, 359-372.	1.8	80
147	A Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes (<i>Amphilophus</i> spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq). G3: Genes, Genomes, Genetics, 2013, 3, 65-74.	1.8	79
148	Mitochondrial Phylogeny of Trematomid Fishes (Nototheniidae, Perciformes) and the Evolution of Antarctic Fish. Molecular Phylogenetics and Evolution, 1996, 5, 383-390.	2.7	78
149	Global Survey of Mitochondrial DNA Sequences in the Threespine Stickleback: Evidence for Recent Migrations. Evolution; International Journal of Organic Evolution, 1994, 48, 608.	2.3	77
150	Deciphering host migrations and origins by means of their microbes. Molecular Ecology, 2005, 14, 3289-3306.	3.9	77
151	Comparative phylogenomic analyses of teleost fish Hox gene clusters: lessons from the cichlid fish Astatotilapia burtoni. BMC Genomics, 2007, 8, 317.	2.8	77
152	A previously unrecognized radiation of ranid frogs in Southern Africa revealed by nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 2005, 37, 674-685.	2.7	76
153	Novel evolutionary relationship among four fish model systems. Trends in Genetics, 2004, 20, 424-431.	6.7	74
154	The Evolutionary Genomics of Cichlid Fishes: Explosive Speciation and Adaptation in the Postgenomic Era. Annual Review of Genomics and Human Genetics, 2014, 15, 417-441.	6.2	74
155	Platyrrhine systematics: A simultaneous analysis of molecular and morphological data. American Journal of Physical Anthropology, 1998, 106, 261-281.	2.1	73
156	The rise and spread of a new pathogen: Seroresistant Moraxella catarrhalis. Genome Research, 2007, 17, 1647-1656.	5.5	73
157	Trans-species polymorphism of class IIMhc loci in danio fishes. Immunogenetics, 1996, 44, 36-48.	2.4	72
158	Are all fishes ancient polyploids?. Journal of Structural and Functional Genomics, 2003, 3, 65-73.	1.2	71
159	Asymmetric Evolution in Two Fish-Specifically Duplicated Receptor Tyrosine Kinase Paralogons Involved in Teleost Coloration. Molecular Biology and Evolution, 2006, 23, 1192-1202.	8.9	71
160	Unresolved orthology and peculiar coding sequence properties of lamprey genes: the KCNA gene family as test case. BMC Genomics, 2011, 12, 325.	2.8	70
161	The Gut Microbial Community of Midas Cichlid Fish in Repeatedly Evolved Limnetic-Benthic Species Pairs. PLoS ONE, 2014, 9, e95027.	2.5	68
162	Phylogeography of the vairone (Leuciscus souffia , Risso 1826) in Central Europe. Molecular Ecology, 2003, 12, 2371-2386.	3.9	67

#	Article	IF	CITATIONS
163	Systematics of New World Monkeys (Platyrrhini, Primates) Based on 16S Mitochondrial DNA Sequences: A Comparative Analysis of Different Weighting Methods in Cladistic Analysis. Molecular Phylogenetics and Evolution, 1995, 4, 448-456.	2.7	66
164	Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus) Tj ETQq0 0 0 rgBT (demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily. BMC Evolutionary Biology, 2013, 13, 25.	Overlock 1 3.2	0 Tf 50 712 1 66
165	Evolution and orthology of hedgehog genes. Trends in Genetics, 1996, 12, 496-497.	6.7	65
166	Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Marine Biology, 1999, 133, 79-90.	1.5	64
167	Hindbrain patterning revisited: timing and effects of retinoic acid signalling. BioEssays, 2001, 23, 981-986.	2.5	64
168	MULTIPLE ORIGIN OF VIVIPARITY IN SOUTHEAST ASIAN GASTROPODS (CERITHIOIDEA: PACHYCHILIDAE) AND ITS EVOLUTIONARY IMPLICATIONS. Evolution; International Journal of Organic Evolution, 2004, 58, 2215-2226.	2.3	64
169	Complete Mitochondrial Genome Sequences of the South American and the Australian Lungfish: Testing of the Phylogenetic Performance of Mitochondrial Data Sets for Phylogenetic Problems in Tetrapod Relationships. Journal of Molecular Evolution, 2004, 59, 834-848.	1.8	64
170	Dual control by a single gene of secondary sexual characters and mating preferences in medaka. BMC Biology, 2009, 7, 64.	3.8	64
171	A molecular phylogeny of â€ [~] true' salamanders (family Salamandridae) and the evolution of terrestriality of reproductive modes. Journal of Zoological Systematics and Evolutionary Research, 2009, 36, 7-16.	1.4	63
172	Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes. Gene, 2002, 295, 205-211.	2.2	62
173	A Microsatellite-Based Genetic Linkage Map of the Cichlid Fish, <i>Astatotilapia burtoni</i> (Teleostei): A Comparison of Genomic Architectures Among Rapidly Speciating Cichlids. Genetics, 2009, 182, 387-397.	2.9	62
174	Genomic signatures of divergent selection and speciation patterns in a â€~natural experiment', the young parallel radiations of <scp>N</scp> icaraguan crater lake cichlid fishes. Molecular Ecology, 2012, 21, 4770-4786.	3.9	62
175	Genetic linkage of distinct adaptive traits in sympatrically speciating crater lake cichlid fish. Nature Communications, 2016, 7, 12736.	12.8	61
176	Molecular phylogeny and historical biogeography of the Aphanius (Pisces, Cyprinodontiformes) species complex of central Anatolia, Turkey. Molecular Phylogenetics and Evolution, 2002, 25, 125-137.	2.7	60
177	Differential regulation of <i>msx</i> genes in the development of the gonopodium, an intromittent organ, and of the "sword,―a sexually selected trait of swordtail fishes (<i>Xiphophorus</i>). Evolution & Development, 2003, 5, 466-477.	2.0	60
178	Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes. Molecular Biology and Evolution, 2017, 34, 2469-2485.	8.9	60
179	Genetic mapping of horizontal stripes in Lake Victoria cichlid fishes: benefits and pitfalls of using RAD markers for dense linkage mapping. Molecular Ecology, 2014, 23, 5224-5240.	3.9	59
180	Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays, 2015, 37, 213-226.	2.5	59

#	Article	IF	CITATIONS
181	From asymmetrical to balanced genomic diversification during rediploidization: Subgenomic evolution in allotetraploid fish. Science Advances, 2020, 6, eaaz7677.	10.3	59
182	quaddRAD: a new highâ€multiplexing and PCR duplicate removal ddRAD protocol produces novel evolutionary insights in a nonradiating cichlid lineage. Molecular Ecology, 2017, 26, 2783-2795.	3.9	57
183	Recurrent ecological adaptations revealed through a molecular analysis of the secretive cophyline frogs of Madagascar. Molecular Phylogenetics and Evolution, 2005, 34, 315-322.	2.7	56
184	Genetic structure and gene flow in an endangered native tilapia fish (Oreochromis esculentus) compared to invasive Nile tilapia (Oreochromis niloticus) in Yala swamp, East Africa. Conservation Genetics, 2011, 12, 243-255.	1.5	56
185	Population structure of the parasitic nematode <i>Anguillicola crassus</i> , an invader of declining North Atlantic eel stocks. Molecular Ecology, 2008, 17, 3478-3495.	3.9	55
186	Mitochondrial Evidence on the Phylogenetic Position of Caecilians (Amphibia: Gymnophiona). Genetics, 2000, 155, 765-775.	2.9	55
187	Molecular evidence on the origin of tetrapods and the relationships of the coelacanth. Trends in Ecology and Evolution, 1995, 10, 111-116.	8.7	54
188	Hox gene variation and evolution. Nature, 1998, 391, 227-228.	27.8	54
189	Expression of zebrafish aldh1a3 (raldh3) and absence of aldh1a1 in teleosts. Gene Expression Patterns, 2008, 8, 141-147.	0.8	54
190	Natural colonization or introduction? Phylogeographical relationships and morphological differentiation of house geckos (Hemidactylus) from Madagascar. Biological Journal of the Linnean Society, 2004, 83, 115-130.	1.6	53
191	2R or not 2R is not the question anymore. Nature Reviews Genetics, 2010, 11, 166-166.	16.3	53
192	Molecular evolution of ependymin and the phylogenetic resolution of early divergences among euteleost fishes. Molecular Biology and Evolution, 1996, 13, 556-573.	8.9	52
193	Revisiting recent challenges to the ancient fish-specific genome duplication hypothesis. Current Biology, 2001, 11, R1005-R1007.	3.9	52
194	Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 13036-13041.	7.1	51
195	Cloning of zebrafish T-box genes tbx15 and tbx18 and their expression during embryonic development. Mechanisms of Development, 2002, 114, 137-141.	1.7	51
196	Comparative Phylogenetic Analyses of the Adaptive Radiation of Lake Tanganyika Cichlid Fish: Nuclear Sequences Are Less Homoplasious But Also Less Informative Than Mitochondrial DNA. Journal of Molecular Evolution, 2005, 61, 666-681.	1.8	51
197	Rapid adaptation to a novel light environment: The importance of ontogeny and phenotypic plasticity in shaping the visual system of Nicaraguan Midas cichlid fish (<i>Amphilophus citrinellus</i> spp.). Molecular Ecology, 2017, 26, 5582-5593.	3.9	50

198 Interrelationships of Elopomorph Fishes. , 1996, , 175-191.

#	Article	IF	CITATIONS
199	The evolution of sexually selected traits in male swordtail fishes (Xiphophorus: Poeciliidae). Heredity, 1997, 79, 329-337.	2.6	49
200	Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic Acids Research, 1999, 27, 2825-2831.	14.5	49
201	Plate tectonics and biogeographical patterns of the Pseudophoxinus (Pisces: Cypriniformes) species complex of central Anatolia, Turkey. Molecular Phylogenetics and Evolution, 2004, 32, 297-308.	2.7	49
202	Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements. Molecular Phylogenetics and Evolution, 2017, 113, 33-48.	2.7	49
203	A History of Host Associations and Evolutionary Diversification for Ophraella (Coleoptera:) Tj ETQq1 1 0.784314 Evolution, 1995, 49, 1008.	rgBT /Ove 2.3	rlock 10 Tf 5 48
204	Molecular systematics of mantelline frogs from Madagascar and the evolution of their femoral glands. Biological Journal of the Linnean Society, 0, 92, 529-539.	1.6	48
205	Annotation of expressed sequence tags for the East African cichlid fish Astatotilapia burtoni and evolutionary analyses of cichlid ORFs. BMC Genomics, 2008, 9, 96.	2.8	48
206	Animal tracking meets migration genomics: transcriptomic analysis of a partially migratory bird species. Molecular Ecology, 2017, 26, 3204-3216.	3.9	48
207	Evolution and Discontinuous Distribution of Rex3 Retrotransposons in Fish. Molecular Biology and Evolution, 2001, 18, 427-431.	8.9	47
208	Genome Duplications and Accelerated Evolution ofHoxGenes and Cluster Architecture in Teleost Fishes1. American Zoologist, 2001, 41, 676-686.	0.7	47
209	Territorial aggression can be sensitive to the status of heterospecific intruders. Behavioural Processes, 2010, 84, 598-601.	1.1	47
210	Mitochondrial phylogeny and phylogeography of East African squeaker catfishes (Siluriformes:) Tj ETQq0 0 0 rgB	「/Qyerlocl	k 10 Tf 50 30 46
211	Genomics of adaptation and speciation in cichlid fishes: recent advances and analyses in African and Neotropical lineages. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 385-394.	4.0	46
212	Characterization and isolation of DNA microsatellite primers for Arapaima gigas, an economically important but severely over-exploited fish species of the Amazon basin. Molecular Ecology Notes, 2003, 3, 128-130.	1.7	45
213	Noncanonical role of Hox14 revealed by its expression patterns in lamprey and shark. Proceedings of the United States of America, 2008, 105, 6679-6683.	7.1	45
214	Effects of constitutive expression of somatolactin alpha on skin pigmentation in medaka. Gene, 2009, 442, 81-87.	2.2	45
215	Horizontal Transfers of Tc1 Elements between Teleost Fishes and Their Vertebrate Parasites, Lampreys. Genome Biology and Evolution, 2012, 4, 929-936.	2.5	45
216	The Identification of the Closest Living Relative(s) of Tetrapods: Phylogenomic Lessons for Resolving Short Ancient Internodes. Systematic Biology, 2016, 65, 1057-1075.	5.6	45

#	Article	IF	CITATIONS
217	Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats?. Ecology and Evolution, 2016, 6, 5342-5357.	1.9	44
218	Exploring the potential of life-history key innovation: brook breeding in the radiation of the Malagasy treefrog genus Boophis. Molecular Ecology, 2002, 11, 1453-1463.	3.9	43
219	Magic bullets and golden rules: Data sampling in molecular phylogenetics. Zoology, 2005, 108, 329-336.	1.2	43
220	Comparative genomics of ParaHox clusters of teleost fishes: gene cluster breakup and the retention of gene sets following whole genome duplications. BMC Genomics, 2007, 8, 312.	2.8	43
221	Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia). Heredity, 2011, 106, 391-400.	2.6	42
222	Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa. Journal of Molecular Evolution, 2015, 81, 90-109.	1.8	42
223	Molecular Phylogenetic Information on the Identity of the Closest Living Relative(s) of Land Vertebrates. Die Naturwissenschaften, 1997, 84, 389-397.	1.6	41
224	Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish. EvoDevo, 2011, 2, 1.	3.2	41
225	SPECIES-SPECIFIC DIFFERENCES IN ADAPTIVE PHENOTYPIC PLASTICITY IN AN ECOLOGICALLY RELEVANT TROPHIC TRAIT: HYPERTROPHIC LIPS IN MIDAS CICHLID FISHES. Evolution; International Journal of Organic Evolution, 2014, 68, 2086-2091.	2.3	41
226	Tempo and mode of recurrent polyploidization in the Carassius auratus species complex (Cypriniformes, Cyprinidae). Heredity, 2014, 112, 415-427.	2.6	41
227	The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science, 2020, 370, 208-214.	12.6	41
228	Cloning and characterization of a microsatellite in the mitochondrial control region of the African side-necked turtle, Pelomedusa subrufa. Gene, 1998, 216, 149-153.	2.2	40
229	Cytochrome b sequence variation and a molecular phylogeny of the live-bearing fish genus Gambusia (Cyprinodontiformes: Poeciliidae). Canadian Journal of Zoology, 1995, 73, 213-227.	1.0	39
230	Wanda: a database of duplicated fish genes. Nucleic Acids Research, 2002, 30, 109-112.	14.5	39
231	Evolution of Duplicated reggie Genes in Zebrafish and Goldfish. Journal of Molecular Evolution, 2002, 54, 235-245.	1.8	39
232	Old fish in a young lake: stone loach (Pisces: Barbatula barbatula) populations in Lake Constance are genetically isolated by distance. Molecular Ecology, 2005, 14, 1229-1239.	3.9	39
233	Genetic, Comparative Genomic, and Expression Analyses of the Mc1r Locus in the Polychromatic Midas Cichlid Fish (Teleostei, Cichlidae Amphilophus sp.) Species Group. Journal of Molecular Evolution, 2010, 70, 405-412.	1.8	39
234	Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evolution Letters, 2018, 2, 323-340.	3.3	39

#	Article	IF	CITATIONS
235	The origin of bmp16, a novel Bmp2/4relative, retained in teleost fish genomes. BMC Evolutionary Biology, 2009, 9, 277.	3.2	38
236	Crater lake cichlids individually specialize along the benthic–limnetic axis. Ecology and Evolution, 2014, 4, 1127-1139.	1.9	38
237	Implementing Large Genomic Single Nucleotide Polymorphism Data Sets in Phylogenetic Network Reconstructions: A Case Study of Particularly Rapid Radiations of Cichlid Fish. Systematic Biology, 2020, 69, 848-862.	5.6	37
238	Resampling-Based Approaches to Study Variation in Morphological Modularity. PLoS ONE, 2013, 8, e69376.	2.5	37
239	Fgfr1 signalling in the development of a sexually selected trait in vertebrates, the sword of swordtail fish. BMC Developmental Biology, 2008, 8, 98.	2.1	36
240	Genome sequence of walking catfish (Clarias batrachus) provides insights into terrestrial adaptation. BMC Genomics, 2018, 19, 952.	2.8	36
241	Predicting developmental processes from evolutionary patterns: a molecular phylogeny of the zebrafish (Danio rerio) and its relatives. Philosophical Transactions of the Royal Society B: Biological Sciences, 1995, 349, 103-111.	4.0	35
242	The Role of microRNAs in the Repeated Parallel Diversification of Lineages of Midas Cichlid Fish from Nicaragua. Genome Biology and Evolution, 2016, 8, 1543-1555.	2.5	35
243	Marine Incursion: The Freshwater Herring of Lake Tanganyika Are the Product of a Marine Invasion into West Africa. PLoS ONE, 2008, 3, e1979.	2.5	35
244	Are all fishes ancient polyploids?. Journal of Structural and Functional Genomics, 2003, 3, 65-73.	1.2	35
245	Low Genetic Variability in the Hawaiian Monk Seal. Conservation Biology, 1997, 11, 482-490.	4.7	34
246	Distinct migratory and non-migratory ecotypes of an endemic New Zealand eleotrid (Gobiomorphus) Tj ETQq0 0 Biology, 2008, 8, 49.	0 rgBT /O 3.2	verlock 10 Tf 34
247	Testing the phylogeny of swordtail fishes using split decomposition and spectral analysis. Journal of Molecular Evolution, 1995, 41, 666.	1.8	33
248	Revisiting de Beer's textbook example of heterochrony and jaw elongation in fish: calmodulin expression reflects heterochronic growth, and underlies morphological innovation in the jaws of belonoid fishes. EvoDevo, 2014, 5, 8.	3.2	33
249	What big lips are good for: on the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes. Biological Journal of the Linnean Society, 2015, 115, 448-455.	1.6	33
250	Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences. BMC Developmental Biology, 2015, 15, 12.	2.1	33
251	Incipient speciation driven by hypertrophied lips in Midas cichlid fishes?. Molecular Ecology, 2017, 26, 2348-2362.	3.9	33
252	The skeletal ontogeny of Astatotilapia burtoni – a direct-developing model system for the evolution and development of the teleost body plan. BMC Developmental Biology, 2018, 18, 8.	2.1	33

#	Article	IF	CITATIONS
253	Convergent phenotypic evolution of the visual system via different molecular routes: How Neotropical cichlid fishes adapt to novel light environments. Evolution Letters, 2018, 2, 341-354.	3.3	33
254	Genomic Basis of Striking Fin Shapes and Colors in the Fighting Fish. Molecular Biology and Evolution, 2021, 38, 3383-3396.	8.9	33
255	Population-structure and genetic diversity in a haplochromine fish cichlid of a satellite lake of Lake Victoria. Molecular Ecology, 2004, 13, 2589-2602.	3.9	32
256	A BAC library of the East African haplochromine cichlid fishAstatotilapia burtoni. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 35-44.	1.3	32
257	Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. FASEB Journal, 2010, 24, 3298-3309.	0.5	32
258	CRATER LAKE COLONIZATION BY NEOTROPICAL CICHLID FISHES. Evolution; International Journal of Organic Evolution, 2013, 67, 281-288.	2.3	32
259	Conservation: Nicaragua Canal could wreak environmental ruin. Nature, 2014, 506, 287-289.	27.8	32
260	Sympatric ecological divergence associated with a color polymorphism. BMC Biology, 2015, 13, 82.	3.8	32
261	Seadragon genome analysis provides insights into its phenotype and sex determination locus. Science Advances, 2021, 7, .	10.3	32
262	Transposon-induced epigenetic silencing in the X chromosome as a novel form of dmrt1 expression regulation during sex determination in the fighting fish. BMC Biology, 2022, 20, 5.	3.8	32
263	Conservation and co-option in developmental programmes: the importance of homology relationships. Frontiers in Zoology, 2005, 2, 15.	2.0	31
264	CEACAM3: An innate immune receptor directed against human-restricted bacterial pathogens. International Journal of Medical Microbiology, 2008, 298, 553-560.	3.6	31
265	Genetic dissection of adaptive form and function in rapidly speciating cichlid fishes. Evolution; International Journal of Organic Evolution, 2017, 71, 1297-1312.	2.3	31
266	Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani. Gene, 2003, 317, 17-27.	2.2	30
267	Molecular phylogeny of Malagasy reed frogs, Heterixalus, and the relative performance of bioacoustics and color-patterns for resolving their systematics. Molecular Phylogenetics and Evolution, 2007, 45, 14-22.	2.7	30
268	Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series. BMC Evolutionary Biology, 2007, 7, 25.	3.2	30
269	CRATER LAKE HABITAT PREDICTS MORPHOLOGICAL DIVERSITY IN ADAPTIVE RADIATIONS OF CICHLID FISHES. Evolution; International Journal of Organic Evolution, 2014, 68, 2145-2155.	2.3	30
270	Ecological and Lineage-Specific Factors Drive the Molecular Evolution of Rhodopsin in Cichlid Fishes. Molecular Biology and Evolution, 2015, 32, 2876-2882.	8.9	30

#	Article	IF	CITATIONS
271	Novel phylogeny of whales revisited but not revised Molecular Biology and Evolution, 1995, 12, 518-20.	8.9	29
272	Novel phylogenetic relationships of the enigmatic brevicipitine and scaphiophrynine toads as revealed by sequences from the nuclear Rag–1 gene. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S378-81.	2.6	29
273	Mitochondrial evidence for distinct phylogeographic units in the endangered Malagasy poison frog Mantella bernhardi. Molecular Ecology, 2006, 15, 1617-1625.	3.9	29
274	Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes. Frontiers in Genetics, 2014, 5, 163.	2.3	29
275	Genome sequences reveal global dispersal routes and suggest convergent genetic adaptations in seahorse evolution. Nature Communications, 2021, 12, 1094.	12.8	29
276	Strong Reproductive Skew Among Males in the Multiply Mated Swordtail Xiphophorus multilineatus (Teleostei). Journal of Heredity, 2005, 96, 346-355.	2.4	28
277	Genomic analysis of cichlid fish â€~natural mutants'. Current Opinion in Genetics and Development, 2008, 18, 551-558.	3.3	28
278	Anthropogenic impact on the historical phytoplankton community of Lake Constance reconstructed by multimarker analysis of sedimentâ€core environmental DNA. Molecular Ecology, 2021, 30, 3040-3056.	3.9	28
279	Sarcopterygian fin ontogeny elucidates the origin of hands with digits. Science Advances, 2020, 6, eabc3510.	10.3	28
280	Widespread geographical distribution of mitochondrial haplotypes in rock-dwelling cichlid fishes from Lake Tanganyika. Molecular Ecology, 1996, 5, 341-350.	3.9	28
281	Microsatellites in the genus Xiphophorus, developed in Xiphophorus montezumae. Molecular Ecology Notes, 2002, 2, 4-6.	1.7	27
282	Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Rayâ€Finned Fish. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2017, 328, 607-619.	1.3	27
283	Lateralized Feeding Behavior is Associated with Asymmetrical Neuroanatomy and Lateralized Gene Expressions in the Brain in Scale-Eating Cichlid Fish. Genome Biology and Evolution, 2017, 9, 3122-3136.	2.5	27
284	Long-term experimental hybridisation results in the evolution of a new sex chromosome in swordtail fish. Nature Communications, 2018, 9, 5136.	12.8	27
285	Life History of Brachyraphis rhabdophora (Pisces: Poeciliidae). Copeia, 1993, 1993, 103.	1.3	26
286	High mitochondrial diversity within and among populations of Malagasy poison frogs. Molecular Phylogenetics and Evolution, 2004, 30, 295-307.	2.7	26
287	Success of cuckoo catfish brood parasitism reflects coevolutionary history and individual experience of their cichlid hosts. Science Advances, 2018, 4, eaar4380.	10.3	26
288	African fishes. Nature, 1991, 350, 467-468.	27.8	25

#	Article	IF	CITATIONS
289	Positive Selection and Gene Conversion in SPP120, a Fertilization-Related Gene, during the East African Cichlid Fish Radiation. Molecular Biology and Evolution, 2007, 24, 2286-2297.	8.9	25
290	Rescue From Oculocutaneous Albinism Type 4 Using Medaka slc45a2 cDNA Driven by Its Own Promoter. Genetics, 2008, 178, 761-769.	2.9	25
291	Molecular investigation of mechanical strain-induced phenotypic plasticity in the ecologically important pharyngeal jaws of cichlid fish. Journal of Applied Ichthyology, 2014, 30, 630-635.	0.7	25
292	Biting into the Genome to Phenome Map: Developmental Genetic Modularity of Cichlid Fish Dentitions. Integrative and Comparative Biology, 2016, 56, 373-388.	2.0	25
293	Towards understanding the genetic basis of mouth asymmetry in the scaleâ€eating cichlid <i>Perissodus microlepis</i> . Molecular Ecology, 2017, 26, 77-91.	3.9	25
294	Conservation and novelty in the microRNA genomic landscape of hyperdiverse cichlid fishes. Scientific Reports, 2019, 9, 13848.	3.3	25
295	The genome of the arapaima (Arapaima gigas) provides insights into gigantism, fast growth and chromosomal sex determination system. Scientific Reports, 2019, 9, 5293.	3.3	25
296	Developmental and Cellular Basis of Vertical Bar Color Patterns in the East African Cichlid Fish Haplochromis latifasciatus. Frontiers in Cell and Developmental Biology, 2020, 8, 62.	3.7	25
297	Handed Foraging Behavior in Scale-Eating Cichlid Fish: Its Potential Role in Shaping Morphological Asymmetry. PLoS ONE, 2012, 7, e44670.	2.5	25
298	Changes in Behavior With Increasing Experience With a Novel Prey in Fry of the Central American Cichlid, Cichlasoma Managuense (Teleostei: Cichlidae). Behaviour, 1986, 98, 145-167.	0.8	24
299	PCR survey of hox genes in the goldfishCarassius auratus auratus. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2007, 308B, 250-258.	1.3	24
300	Molecular phylogenetic evidence for paraphyly of the genus Sooglossus, with the description of a new genus of Seychellean frogs. Biological Journal of the Linnean Society, 0, 91, 347-359.	1.6	24
301	Mouth asymmetry in the textbook example of scale-eating cichlid fish is not a discrete dimorphism after all. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4715-4723.	2.6	24
302	Ecoâ€morphological differentiation in Lake Magadi tilapia, an extremophile cichlid fish living in hot, alkaline and hypersaline lakes in East Africa. Molecular Ecology, 2016, 25, 1610-1625.	3.9	24
303	MicroRNA Gene Regulation in Extremely Young and Parallel Adaptive Radiations of Crater Lake Cichlid Fish. Molecular Biology and Evolution, 2019, 36, 2498-2511.	8.9	24
304	The Developmental and Genetic Architecture of the Sexually Selected Male Ornament of Swordtails. Current Biology, 2021, 31, 911-922.e4.	3.9	24
305	Polymorphic DNA microsatellites identified in the yellow dung fly (Scathophaga stercoraria). Molecular Ecology, 2000, 9, 2207-2209.	3.9	23
306	Phylogenetic analyses suggest lateral gene transfer from the mitochondrion to the apicoplast. Gene, 2002, 285, 109-118.	2.2	23

#	Article	IF	CITATIONS
307	Duplication, duplication. Nature, 2003, 421, 31-32.	27.8	23
308	Population genetic structure of North American burbot (Lota lota maculosa) across the Nearctic and at its contact zone with Eurasian burbot (LotaÂlotaÂlota). Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65, 2412-2426.	1.4	23
309	Cyclohexane-1,2-dione hydrolase: A new tool to degrade alicyclic compounds. Journal of Molecular Catalysis B: Enzymatic, 2009, 61, 47-49.	1.8	23
310	Detection and Phylogenetic Assessment of Conserved Synteny Derived from Whole Genome Duplications. Methods in Molecular Biology, 2012, 855, 385-395.	0.9	23
311	Evolution of the Vertebrate Pax4/6 Class of Genes with Focus on Its Novel Member, the Pax10 Gene. Genome Biology and Evolution, 2014, 6, 1635-1651.	2.5	23
312	Parallel evolution in Ugandan crater lakes: repeated evolution of limnetic body shapes in haplochromine cichlid fish. BMC Evolutionary Biology, 2015, 15, 9.	3.2	23
313	Pleiotropic jaw morphology links the evolution of mechanical modularity and functional feeding convergence in Lake Malawi cichlids. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182358.	2.6	23
314	Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish. Scientific Reports, 2020, 10, 12329.	3.3	23
315	Introduced Predator Elicits Deficient Brood Defence Behaviour in a Crater Lake Fish. PLoS ONE, 2012, 7, e30064.	2.5	23
316	Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. The Journal of Experimental Zoology, 2000, 288, 76-92.	1.4	23
317	Phylogeographic Patterns in Populations of Cichlid Fishes from Rocky Habitats in Lake Tanganyika. , 1997, , 97-111.		22
318	Phylogenomic analyses of KCNA gene clusters in vertebrates: why do gene clusters stay intact?. BMC Evolutionary Biology, 2007, 7, 139.	3.2	22
319	The role of the Yala swamp lakes in the conservation of Lake Victoria region haplochromine cichlids: Evidence from genetic and trophic ecology studies. Lakes and Reservoirs: Research and Management, 2008, 13, 95-104.	0.9	22
320	Revealing Less Derived Nature of Cartilaginous Fish Genomes with Their Evolutionary Time Scale Inferred with Nuclear Genes. PLoS ONE, 2013, 8, e66400.	2.5	22
321	Evolutionary active transposable elements in the genome of the coelacanth. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 322-333.	1.3	22
322	Mapping active promoters by Ch <scp>IP</scp> â€seq profiling of H3K4me3 in cichlid fish – a first step to uncover cisâ€regulatory elements in ecological model teleosts. Molecular Ecology Resources, 2015, 15, 761-771.	4.8	22
323	Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Molecular Ecology, 2017, 26, 6634-6653.	3.9	22
324	Molecular systematics (2nd edn). Trends in Genetics, 1996, 12, 534-535.	6.7	21

#	Article	IF	CITATIONS
325	Genetic admixture of burbot (Teleostei: Lota lota) in Lake Constance from two European glacial refugia. Molecular Ecology, 2006, 15, 3583-3600.	3.9	21
326	Adjustment of brood care behaviour in the absence of a mate in two species of Nicaraguan crater lake cichlids. Behavioral Ecology and Sociobiology, 2011, 65, 613-619.	1.4	21
327	Are sympatrically speciating Midas cichlid fish special? Patterns of morphological and genetic variation in the closely related species <i>Archocentrus centrarchus</i> . Ecology and Evolution, 2016, 6, 4102-4114.	1.9	21
328	Cyclohexane-1,2-Dione Hydrolase from Denitrifying Azoarcus sp. Strain 22Lin, a Novel Member of the Thiamine Diphosphate Enzyme Family. Journal of Bacteriology, 2011, 193, 6760-6769.	2.2	20
329	Evolutionary divergence of 3' UTRs in cichlid fishes. BMC Genomics, 2018, 19, 433.	2.8	20
330	Different Sources of Allelic Variation Drove Repeated Color Pattern Divergence in Cichlid Fishes. Molecular Biology and Evolution, 2021, 38, 465-477.	8.9	20
331	Using Gene-History and Expression Analyses to Assess the Involvement of LGI Genes in Human Disorders. Molecular Biology and Evolution, 2005, 22, 2209-2216.	8.9	19
332	Genetic support for random mating between left and rightâ€mouth morphs in the dimorphic scaleâ€eating cichlid fish <i>Perissodus microlepis</i> from Lake Tanganyika. Journal of Fish Biology, 2010, 76, 1940-1957.	1.6	19
333	Cenetic and environmental effects on the morphological asymmetry in the scaleâ€eating cichlid fish, Perissodus microlepis. Ecology and Evolution, 2015, 5, 4277-4286.	1.9	19
334	Genome of the Malawi golden cichlid fish (Melanochromis auratus) reveals exon loss of oca2 in an amelanistic morph. Pigment Cell and Melanoma Research, 2019, 32, 719-723.	3.3	19
335	Homology and Homoplasy: The Retention of Genetic Programmes. Novartis Foundation Symposium, 1999, 222, 141-157.	1.1	19
336	Widespread geographical distribution of mitochondrial haplotypes in rock-dwelling cichlid fishes from Lake Tanganyika. Molecular Ecology, 1996, 5, 341-350.	3.9	19
337	Analysis of the very large G-protein coupled receptor gene (Vlgr1/Mass1/USH2C) in zebrafish. Gene, 2005, 353, 200-206.	2.2	18
338	A BAC library for the goldfishCarassius auratus auratus (Cyprinidae, Cypriniformes). Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2006, 306B, 567-574.	1.3	18
339	Species divergence and seasonal succession in rates of mate desertion in closely related Neotropical cichlid fishes. Behavioral Ecology and Sociobiology, 2011, 65, 607-612.	1.4	18
340	Differential predation on the two colour morphs of Nicaraguan Crater lake Midas cichlid fish: implications for the maintenance of its gold-dark polymorphism. Biological Journal of the Linnean Society, 2014, 112, 123-131.	1.6	18
341	Pronounced genetic differentiation of small, isolated and fragmented tilapia populations inhabiting the Magadi Soda Lake in Kenya. Hydrobiologia, 2014, 739, 55-71.	2.0	18
342	Intrastrand triplex DNA repeats in bacteria: a source of genomic instability. Nucleic Acids Research, 2015, 43, gkv1017.	14.5	18

Axel Meyer

#	Article	IF	CITATIONS
343	Rethink the Nicaragua Canal. Science, 2015, 347, 355-355.	12.6	18
344	Evolutionary dynamics of pre- and postzygotic reproductive isolation in cichlid fishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190535.	4.0	18
345	An intronic transposon insertion associates with a trans-species color polymorphism in Midas cichlid fishes. Nature Communications, 2022, 13, 296.	12.8	18
346	Large-Scale Gene and Ancient Genome Duplications. , 2005, , 329-368.		17
347	Microsatellites from the vairone Leuciscus souffia (Pisces: Cyprinidae) and their application to closely related species. Molecular Ecology Notes, 2007, 7, 1048-1050.	1.7	17
348	A phylogeographic investigation of the hybrid origin of a species of swordtail fish from Mexico. Molecular Ecology, 2012, 21, 2692-2712.	3.9	17
349	The Piranha Genome Provides Molecular Insight Associated to Its Unique Feeding Behavior. Genome Biology and Evolution, 2019, 11, 2099-2106.	2.5	17
350	Between a Rock and a Hard Polytomy: Phylogenomics of the Rock-Dwelling Mbuna Cichlids of Lake Malaŵi. Systematic Biology, 2022, 71, 741-757.	5.6	17
351	Molecules, Morphology, and Area Cladograms: A Cladistic and Biogeographic Analysis of Gambusia (Teleostei: Poeciliidae). Systematic Biology, 1995, 44, 221.	5.6	16
352	Microsatellite Analysis of Population Structure in the Endangered Hawaiian Monk Seal. Conservation Biology, 2001, 15, 457-466.	4.7	16
353	Coâ€orthology of <i><scp>P</scp>ax4</i> and <i><scp>P</scp>ax6</i> to the fly <i>eyeless</i> gene: molecular phylogenetic, comparative genomic, and embryological analyses. Evolution & Development, 2011, 13, 448-459.	2.0	16
354	Identification and Characterization of Gene Expression Involved in the Coloration of Cichlid Fish Using Microarray and qRT-PCR Approaches. Journal of Molecular Evolution, 2011, 72, 127-137.	1.8	16
355	Revisiting the origin of the vertebrate Hox14 by including its relict sarcopterygian members. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 515-525.	1.3	16
356	The Integrated Genomic Architecture and Evolution of Dental Divergence in East African Cichlid Fishes (<i>Haplochromis chilotes</i> x <i>H. nyererei</i>). G3: Genes, Genomes, Genetics, 2017, 7, 3195-3202.	1.8	16
357	Heterochronic opsin expression due to early light deprivation results in drastically shifted visual sensitivity in a cichlid fish: Possible role of thyroid hormone signaling. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2018, 330, 202-214.	1.3	16
358	Reverting ontogeny: rapid phenotypic plasticity of colour vision in cichlid fish. Royal Society Open Science, 2019, 6, 190841.	2.4	16
359	Cytochrome b of fish mitochondria is strongly resistant to funiculosin, a powerful inhibitor of respiration. Archives of Biochemistry and Biophysics, 1992, 295, 198-204.	3.0	15
360	Functional diversification of sonic hedgehog paralog enhancers identified by phylogenomic reconstruction. Genome Biology, 2007, 8, R106.	9.6	15

#	Article	IF	CITATIONS
361	Conservation of shh cis-regulatory architecture of the coelacanth is consistent with its ancestral phylogenetic position. EvoDevo, 2010, 1, 11.	3.2	15
362	Introgressive hybridization and latitudinal admixture clines in North Atlantic eels. BMC Evolutionary Biology, 2014, 14, 61.	3.2	15
363	Chromosomal rearrangements, phenotypic variation and modularity: a case study from a contact zone between house mouse Robertsonian races in Central Italy. Ecology and Evolution, 2016, 6, 1353-1362.	1.9	15
364	Oil extraction imperils Africa's Great Lakes. Science, 2016, 354, 561-562.	12.6	15
365	The imperiled fish fauna in the Nicaragua Canal zone. Conservation Biology, 2017, 31, 86-95.	4.7	15
366	Evolutionary Dynamics of Structural Variation at a Key Locus for Color Pattern Diversification in Cichlid Fishes. Genome Biology and Evolution, 2019, 11, 3452-3465.	2.5	15
367	Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP- <i>gremlin</i> - <i>shh</i> signaling network. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
368	Of bars and stripes: A Malawi cichlid hybrid cross provides insights into genetic modularity and evolution of modifier loci underlying colour pattern diversification. Molecular Ecology, 2021, 30, 4789-4803.	3.9	15
369	Broad taxonomic applicability of microsatellites developed for the highly polymorphic neotropical cichlid, Amphilophus citrinellum. Animal Genetics, 2000, 31, 151-151.	1.7	15
370	Repeating Patterns of Mimicry. PLoS Biology, 2006, 4, e341.	5.6	14
371	An organizer controls the development of the "sword,―a sexually selected trait in swordtail fish. Evolution & Development, 2008, 10, 403-412.	2.0	14
372	One cost of being gold: selective predation and implications for the maintenance of the Midas cichlid colour polymorphism (Perciformes: Cichlidae). Biological Journal of the Linnean Society, 2014, 111, 350-358.	1.6	14
373	Evolution: Tinkering within Gene Regulatory Landscapes. Current Biology, 2015, 25, R285-R288.	3.9	14
374	Phylogenomic analysis of Lake Malawi cichlid fishes: Further evidence that the three-stage model of diversification does not fit. Molecular Phylogenetics and Evolution, 2017, 114, 40-48.	2.7	14
375	Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus) — towards understanding gene function and regulatory evolution in an ecological model system for rapid phenotypic diversification. BMC Developmental Biology, 2017, 17, 15.	2.1	14
376	Phylogenomics of a putatively convergent novelty: did hypertrophied lips evolve once or repeatedly in Lake Malawi cichlid fishes?. BMC Evolutionary Biology, 2018, 18, 179.	3.2	14
377	Phylogenetic Relationships of Species of the Genus Brachyrhaphis (Poeciliidae) Inferred from Partial Mitochondrial DNA Sequences. Copeia, 1997, 1997, 298.	1.3	13
378	Do relaxed selection and habitat temperature facilitate biased mitogenomic introgression in a narrowly endemic fish?. Ecology and Evolution, 2016, 6, 3684-3698.	1.9	13

#	Article	IF	CITATIONS
379	Morphological and genetic correlates in the left–right asymmetric scale-eating cichlid fish of Lake Tanganyika. Biological Journal of the Linnean Society, 2018, 124, 67-84.	1.6	13
380	Dissecting a potential spandrel of adaptive radiation: Body depth and pectoral fin ecomorphology coevolve in Lake Malawi cichlid fishes. Ecology and Evolution, 2018, 8, 11945-11953.	1.9	13
381	Molecular and morphological convergence to sulfide-tolerant fishes in a new species of Jenynsia (Cyprinodontiformes: Anablepidae), the first extremophile member of the family. PLoS ONE, 2019, 14, e0218810.	2.5	13
382	A comprehensive overview of the developmental basis and adaptive significance of a textbook polymorphism: head asymmetry in the cichlid fish Perissodus microlepis. Hydrobiologia, 2019, 832, 65-84.	2.0	13
383	Asymmetry in genitalia is in sync with lateralized mating behavior but not with the lateralization of other behaviors. Environmental Epigenetics, 2020, 66, 71-81.	1.8	13
384	Parallel and non-parallel changes of the gut microbiota during trophic diversification in repeated young adaptive radiations of sympatric cichlid fish. Microbiome, 2020, 8, 149.	11.1	13
385	Reconstructing the Evolutionary History of Chromosomal Races on Islands: A Genome-Wide Analysis of Natural House Mouse Populations. Molecular Biology and Evolution, 2020, 37, 2825-2837.	8.9	13
386	First feeding success with two types of prey by the Central American cichlid fish, Cichlasoma managuense (Pisces, Cichlidae): morphology versus behavior. Environmental Biology of Fishes, 1987, 18, 127-134.	1.0	12
387	THE DYNAMICS OF MALE BROODING, MATING PATTERNS, AND SEX ROLES IN PIPEFISHES AND SEAHORSES (FAMILY SYNGNATHIDAE). Evolution; International Journal of Organic Evolution, 2003, 57, 1374.	2.3	12
388	Identification of novel genes involved in the development of the sword and gonopodium in swordtail fish. Developmental Dynamics, 2009, 238, 1674-1687.	1.8	12
389	Genetic evidence for prevalence of alloparental care in a socially monogamous biparental cichlid fish, <i>Perissodus microlepis</i> , from Lake Tanganyika supports the "selfish shepherd effect―hypothesis. Ecology and Evolution, 2016, 6, 2843-2853.	1.9	12
390	Critical Uncertainties and Gaps in the Environmental- and Social-Impact Assessment of the Proposed Interoceanic Canal through Nicaragua. BioScience, 2016, 66, 632-645.	4.9	12
391	Diving into divergence: Differentiation in swimming performances, physiology and gene expression between locallyâ€adapted sympatric cichlid fishes. Molecular Ecology, 2020, 29, 1219-1234.	3.9	12
392	A Genomic Cluster Containing Novel and Conserved Genes is Associated with Cichlid Fish Dental Developmental Convergence. Molecular Biology and Evolution, 2020, 37, 3165-3174.	8.9	12
393	The comparative genomic landscape of adaptive radiation in crater lake cichlid fishes. Molecular Ecology, 2021, 30, 955-972.	3.9	12
394	Reversed evolution of grazer resistance to cyanobacteria. Nature Communications, 2021, 12, 1945.	12.8	12
395	Eggspot Number and Sexual Selection in the Cichlid Fish Astatotilapia burtoni. PLoS ONE, 2012, 7, e43695.	2.5	12
396	The repeated evolution of stripe patterns is correlated with body morphology in the adaptive radiations of East African cichlid fishes. Ecology and Evolution, 2022, 12, e8568.	1.9	12

#	Article	IF	CITATIONS
397	'Natural selection merely modified while redundancy created'–Susumu Ohno's idea of the evolutionary importance of gene and genome duplications. Journal of Structural and Functional Genomics, 2003, 3, 7-9.	1.2	11
398	Comparative genomics approach to detecting split-coding regions in a low-coverage genome: lessons from the chimaera Callorhinchus milii (Holocephali, Chondrichthyes). Briefings in Bioinformatics, 2011, 12, 474-484.	6.5	11
399	The Imprinted NPAP1 Gene in the Prader–Willi Syndrome Region Belongs to a POM121-Related Family of Retrogenes. Genome Biology and Evolution, 2014, 6, 344-351.	2.5	11
400	Transcriptomics of two evolutionary novelties: how to make a spermâ€ŧransfer organ out of an anal fin and a sexually selected "sword―out of a caudal fin. Ecology and Evolution, 2015, 5, 848-864.	1.9	11
401	Early developmental and allometric patterns in the electric yellow cichlid <i>Labidochromis caeruleus</i> . Journal of Fish Biology, 2018, 92, 1888-1901.	1.6	11
402	Lissamphibian limbs and the origins of tetrapod hox domains. Developmental Biology, 2019, 456, 138-144.	2.0	11
403	Sympatric and Allopatric Diversification in the Adaptive Radiations of Midas Cichlids in Nicaraguan Lakes. , 2021, , 175-216.		11
404	Diversity in visual sensitivity across Neotropical cichlid fishes via differential expression and intraretinal variation of opsin genes. Molecular Ecology, 2021, 30, 1880-1891.	3.9	11
405	Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics, 1996, 44, 36-48.	2.4	11
406	Evidence for sympatric speciation? (Reply). Nature, 2006, 444, E13-E13.	27.8	10
407	Genetic identification of units for conservation in tomato frogs, genus Dyscophus. Conservation Genetics, 2006, 7, 473-482.	1.5	10
408	Into the canyons: The phylogeography of the Malagasy frogs Mantella expectata and Scaphiophryne gottlebei in the arid Isalo Massif, and its significance for conservation (Amphibia: Mantellidae and) Tj ETQq0 0 0 i	ſgBiI∉Over	loalo10 Tf 50
409	Heritability and adaptive significance of the number of egg-dummies in the cichlid fish <i>Astatotilapia burtoni</i> . Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2318-2324.	2.6	10
410	Asymmetric admixture and morphological variability at a suture zone: parapatric burbot subspecies (Pisces) in the Mackenzie River basin, Canada. Hydrobiologia, 2012, 683, 217-229.	2.0	10
411	Grand Challenges in Comparative Tooth Biology. Integrative and Comparative Biology, 2020, 60, 563-580.	2.0	10
412	Habitat light sets the boundaries for the rapid evolution of cichlid fish vision, while sexual selection can tune it within those limits. Molecular Ecology, 2020, 29, 1476-1493.	3.9	10
413	Functional conservation and divergence of colorâ€patternâ€related agouti family genes in teleost fishes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2021, 336, 443-450.	1.3	10
414	Total evidence: Molecules, morphology, and the phylogenetics of cichlid fishes. The Journal of Experimental Zoology, 2000, 288, 76.	1.4	10

#	Article	IF	CITATIONS
415	The evolution of sexually selected traits in male swordtail fishes (Xiphophorus: Poeciliidae). Heredity, 1997, 79, 329-337.	2.6	10
416	Phylogenomic Analyses Show Repeated Evolution of Hypertrophied Lips Among Lake Malawi Cichlid Fishes. Genome Biology and Evolution, 2022, 14, .	2.5	10
417	Genome Duplications and Accelerated Evolution ofHoxGenes and Cluster Architecture in Teleost Fishes. American Zoologist, 2001, 41, 676-686.	0.7	9
418	Microsatellites from the burbot (Lota lota), a freshwater gadoid fish (Teleostei). Molecular Ecology Notes, 2005, 5, 390-392.	1.7	9
419	Isolation and characterization of short tandem repeats in an invasive swimbladder nematode, parasitic in Atlantic freshwater eels, Anguillicola crassus. Molecular Ecology Notes, 2007, 7, 1051-1053.	1.7	9
420	Base composition, selection, and phylogenetic significance of indels in the recombination activating gene-1 in vertebrates. Frontiers in Zoology, 2009, 6, 32.	2.0	9
421	Positive Darwinian Selection Drives the Evolution of the Morphology-Related Gene, EPCAM, in Particularly Species-Rich Lineages of African Cichlid Fishes. Journal of Molecular Evolution, 2011, 73, 1-9.	1.8	9
422	Sexual dimorphism in a trophically polymorphic cichlid fish?. Journal of Morphology, 2015, 276, 1448-1454.	1.2	9
423	Fish Populations in East African Saline Lakes. , 2016, , 227-257.		9
424	Evolution of the elaborate male intromittent organ of <i>Xiphophorus</i> fishes. Ecology and Evolution, 2016, 6, 7207-7220.	1.9	9
425	Divergent Allometric Trajectories in Gene Expression and Coexpression Produce Species Differences in Sympatrically Speciating Midas Cichlid Fish. Genome Biology and Evolution, 2019, 11, 1644-1657.	2.5	9
426	Optimized and affordable highâ€ŧhroughput sequencing workflow for preserved and nonpreserved small zooplankton specimens. Molecular Ecology Resources, 2020, 20, 1632-1646.	4.8	9
427	Rapid adaptive radiation in a hillstream cyprinid fish in the East African White Nile River basin. Molecular Ecology, 2021, 30, 5530-5550.	3.9	9
428	The Radiation of Characiform Fishes and the Limits of Resolution of Mitochondrial Ribosomal DNA Sequences. Systematic Biology, 1997, 46, 75.	5.6	9
429	Genetic variation of an endangered Malagasy frog, Mantella cowani, and its phylogeographic relationship to the widespread M. baroni. Conservation Genetics, 2006, 6, 1041-1047.	1.5	8
430	Genome Desertification in Eutherians: Can Gene Deserts Explain the Uneven Distribution of Genes in Placental Mammalian Genomes?. Journal of Molecular Evolution, 2009, 69, 207-216.	1.8	8
431	Molecular Evolution of the Neural Crest Regulatory Network in Ray-Finned Fish. Genome Biology and Evolution, 2015, 7, 3033-3046.	2.5	8
432	The role of rare morph advantage and conspicuousness in the stable goldâ€dark colour polymorphism of a crater lake Midas cichlid fish. Journal of Animal Ecology, 2017, 86, 1044-1053.	2.8	8

#	Article	IF	CITATIONS
433	Fragile DNA contributes to repeated evolution. Genome Biology, 2019, 20, 39.	8.8	8
434	Genomic basis of evolutionary adaptation in a warm-blooded fish. Innovation(China), 2022, 3, 100185.	9.1	8
435	Molecular parallelism in the evolution of a master sexâ€determining role for the antiâ€Mullerian hormone receptor 2 gene (<i>amhr2</i>) in Midas cichlids. Molecular Ecology, 2023, 32, 1398-1410.	3.9	8
436	Trade-offs in cavefish sensory capacity. BMC Biology, 2013, 11, 5.	3.8	7
437	Retinoic Acid Is Involved in the Metamorphosis of the Anal Fin into an Intromittent Organ, the Gonopodium, in the Green Swordtail (Xiphophorus hellerii). PLoS ONE, 2013, 8, e77580.	2.5	7
438	Vegetation changes over the last centuries in the Lower Lake Constance region reconstructed from sedimentâ€core environmental DNA. Environmental DNA, 2022, 4, 830-845.	5.8	7
439	Coelacanth's relationships. Nature, 1991, 353, 219-219.	27.8	6
440	Isolation and characterization of 12 dinucleotide microsatellites in the European eel, <i>Anguilla anguilla</i> L., and tests of amplification in other species of eels. Molecular Ecology Resources, 2008, 8, 1382-1385.	4.8	6
441	Genetic signatures in an invasive parasite of <i>Anguilla anguilla</i> correlate with differential stock management. Journal of Fish Biology, 2010, 77, 191-210.	1.6	6
442	Genetic evidence for panmixia in a colony-breeding crater lake cichlid fish. Scientific Reports, 2018, 8, 1166.	3.3	6
443	Convergent Evolution of Cichlid Fish Pharyngeal Jaw Dentitions in Mollusk-Crushing Predators: Comparative X-Ray Computed Tomography of Tooth Sizes, Numbers, and Replacement. Integrative and Comparative Biology, 2020, 60, 656-664.	2.0	6
444	Dual function and associated costs of a highly exaggerated trait in a cichlid fish. Ecology and Evolution, 2021, 11, 17496-17508.	1.9	6
445	Emergence of distinct syntenic density regimes is associated with early metazoan genomic transitions. BMC Genomics, 2022, 23, 143.	2.8	6
446	EVOLUTION: Explaining Exuberant Diversification. Science, 2001, 294, 64-65.	12.6	5
447	Evolutionary Biology: Cichlid species flocks of the past and present. Heredity, 2005, 95, 419-420.	2.6	5
448	Influence of Age and Size on the Response to Novel Prey by Fry of the Cichlid Fish <i>Cichlasoma managuense</i> (Pisces: Cichlidae). Ethology, 1988, 78, 199-208.	1.1	5
449	Sympatric speciation without borders?. Molecular Ecology, 2010, 19, 1991-1993.	3.9	5
450	Multi-gene phylogeny of Madagascar's plated lizards, Zonosaurus and Tracheloptychus (Squamata:) Tj ETQq	0 0 0 rgBT	Overlock 10

#	Article	IF	CITATIONS
451	Nuisance species in lake constance revealed through eDNA. Biological Invasions, 2021, 23, 1619-1636.	2.4	5
452	Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecology and Evolution, 2022, 12, .	1.9	5
453	Evolutionary celebrities. Nature, 2001, 410, 17-18.	27.8	4
454	The phantoms of a high-seven - or - why do our thumbs stick out?. Frontiers in Zoology, 2015, 12, 23.	2.0	4
455	Extreme Evolution. Scientific American, 2015, 312, 70-75.	1.0	4
456	Thyroid hormone tinkering elicits integrated phenotypic changes potentially explaining rapid adaptation of color vision in cichlid fish. Evolution; International Journal of Organic Evolution, 2022, 76, 837-845.	2.3	4
457	Response to Comment on "Origin of the Superflock of Cichlid Fishes from Lake Victoria, East Africa". Science, 2004, 304, 963c-963c.	12.6	3
458	Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin. Genome Biology and Evolution, 2013, 5, 1485-1502.	2.5	3
459	Gene(s) and individual feeding behavior: Exploring ecoâ€evolutionary dynamics underlying leftâ€right asymmetry in the scaleâ€eating cichlid fish <i>Perissodus microlepis</i> . Ecology and Evolution, 2018, 8, 5495-5507.	1.9	3
460	Phenotypic Plasticity in Vertebrate Dentitions. Integrative and Comparative Biology, 2020, 60, 608-618.	2.0	3
461	Genetic assimilation and the evolution of direction of genital asymmetry in anablepid fishes. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220266.	2.6	3
462	The coelacanth and its genome. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2014, 322, 317-321.	1.3	2
463	The direction of genital asymmetry is expressed stochastically in internally fertilizing anablepid fishes. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200969.	2.6	2
464	Are all fishes ancient polyploids?. , 2003, , 65-73.		2
465	New takes on old lakes. Trends in Ecology and Evolution, 2001, 16, 109-110.	8.7	1
466	EVOLUTION: Growing Trees from Molecular Data. Science, 2001, 294, 2297-2298.	12.6	1
467	Learning from the Altmeister. Nature, 2004, 428, 897-897.	27.8	1
468	George C. Williams (1926–2010). Nature, 2010, 467, 790-790.	27.8	1

Axel Meyer

#	Article	IF	CITATIONS
469	Genetic structure of the vairone <i>Telestes souffia</i> in the eastern part of Lake Constance, central Europe. Journal of Fish Biology, 2010, 77, 1158-1164.	1.6	1
470	Similar levels of diversity and population Structure in superflock and non-superflock cichlid fishes from Lake Victoria, Africa. Tropical Freshwater Biology, 2011, 18, .	0.2	1
471	Heterogeneity across Neotropical aquatic environments affects prokaryotic and eukaryotic biodiversity based on environmental DNA. Environmental DNA, 2022, 4, 469-484.	5.8	1
472	Benefits and limitations of a new genomeâ€based PCRâ€RFLP genotyping assay (GBâ€RFLP): A SNPâ€based detection method for identification of species in extremely young adaptive radiations. Ecology and Evolution, 2022, 12, e8751.	1.9	1
473	The stuff new species are made of?. Nature Genetics, 2002, 30, 127-128.	21.4	0
474	Will he still look good with the lights on? Spectral tuning of visual pigments in fish. Journal of Biology, 2008, 7, 26.	2.7	0
475	Timing of Genome Duplications Relative to the Origin of the Vertebrates: Did Cyclostomes Diverge before or after?. Molecular Biology and Evolution, 2008, 26, 713-713.	8.9	0
476	Identification of novel genes involved in the development of the sword and gonopodium in swordtail fish. Developmental Dynamics, 2009, 238, spcone-spcone.	1.8	0
477	Neoceratodus forsteri (Australian lungfish). Trends in Genetics, 2021, 37, 600-601.	6.7	0
478	Fishing Stories. Science, 2000, 288, 61-62.	12.6	0
479	MacVector: Sequence Analysis Software. Version 4.1.AssemblyLIGN: Sequence Assembly Software Quarterly Review of Biology, 1995, 70, 128-129.	0.1	0
480	Lessons Learnt, Open Research Questions and Recommendations. Water Resources Development and Management, 2016, , 279-292.	0.4	0