
Jeff Ollerton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2820045/publications.pdf Version: 2024-02-01

IFFF OLLEPTON

#	Article	IF	CITATIONS
1	Impacts of the introduced European honeybee on Australian beeâ€flower network properties in urban bushland remnants and residential gardens. Austral Ecology, 2022, 47, 35-53.	1.5	19
2	Heterospecific pollen deposition is positively associated with reproductive success in a diverse hummingbirdâ€pollinated plant community. Oikos, 2022, 2022, .	2.7	13
3	Rapid assessment of insect pollination services to inform decisionâ€making. Conservation Biology, 2022, 36, .	4.7	3
4	Short flowers for long tongues: Functional specialization in a nocturnal pollination network of an asclepiad in longâ€ŧongued hawkmoths. Biotropica, 2022, 54, 729-738.	1.6	2
5	Populationâ€level plant pollination mode is influenced by Quaternary climate and pollinators. Biotropica, 2021, 53, 632-642.	1.6	2
6	Plant-pollinator networks in Australian urban bushland remnants are not structurally equivalent to those in residential gardens. Urban Ecosystems, 2021, 24, 973-987.	2.4	23
7	Global effects of land-use intensity on local pollinator biodiversity. Nature Communications, 2021, 12, 2902.	12.8	87
8	An empirical attack tolerance test alters the structure and species richness of plant–pollinator networks. Functional Ecology, 2020, 34, 2246-2258.	3.6	33
9	Specialized cockroach pollination in the rare and endangered plant <i>Vincetoxicum hainanense</i> in China. American Journal of Botany, 2020, 107, 1355-1365.	1.7	11
10	The origins of flowering plants and pollinators. Science, 2020, 368, 1306-1308.	12.6	61
11	Interactions between birds and flowers of Rhododendron spp., and their implications for mountain communities in Nepal. Plants People Planet, 2020, 2, 320-325.	3.3	3
12	Impact of extreme events on pollinator assemblages. Current Opinion in Insect Science, 2020, 38, 34-39.	4.4	8
13	The diversity and evolution of pollination systems in large plant clades: Apocynaceae as a case study. Annals of Botany, 2019, 123, 311-325.	2.9	53
14	Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Scientific Reports, 2019, 9, 7376.	3.3	53
15	Plant-Pollinator Networks in the Tropics: A Review. , 2018, , 73-91.		77
16	British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 2018, 222, 278-283.	4.1	61
17	Trait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirds. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172754.	2.6	30
18	Local and regional specialization in plant–pollinator networks. Oikos, 2018, 127, 531-537.	2.7	14

#	Article	IF	CITATIONS
19	Assessment of the response of pollinator abundance to environmental pressures using structured expert elicitation. Journal of Apicultural Research, 2018, 57, 593-604.	1.5	11
20	Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree. Acta Botanica Brasilica, 2018, 32, 462-472.	0.8	16
21	Nectar production, reproductive success and the evolution of generalised pollination within a specialised pollen-rewarding plant family: a case study using Miconia theizans. Plant Systematics and Evolution, 2017, 303, 709-718.	0.9	29
22	Bringing ecology blogging into the scientific fold: measuring reach and impact of science community blogs. Royal Society Open Science, 2017, 4, 170957.	2.4	11
23	Pollinator Diversity: Distribution, Ecological Function, and Conservation. Annual Review of Ecology, Evolution, and Systematics, 2017, 48, 353-376.	8.3	424
24	Diversity of Diptera families that pollinate Ceropegia (Apocynaceae) trap flowers: An update in light of new data and phylogenetic analyses. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 234, 233-244.	1.2	21
25	Network analysis of phenological units to detect important species in plant-pollinator assemblages: can it inform conservation strategies?. Community Ecology, 2017, 18, 1-10.	0.9	37
26	The city as a refuge for insect pollinators. Conservation Biology, 2017, 31, 24-29.	4.7	368
27	The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecology and Diversity, 2016, 9, 253-262.	2.4	68
28	Protecting an Ecosystem Service. Advances in Ecological Research, 2016, 54, 135-206.	2.7	115
29	The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes. Annals of Botany, 2016, 118, 415-429.	2.9	73
30	Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea?. Biotropica, 2016, 48, 141-145.	1.6	114
31	The integration of alien plants in mutualistic plant–hummingbird networks across the Americas: the importance of species traits and insularity. Diversity and Distributions, 2016, 22, 672-681.	4.1	47
32	Spatial effects of artificial feeders on hummingbird abundance, floral visitation and pollen deposition. Journal of Ornithology, 2016, 157, 573-581.	1.1	21
33	How can an understanding of plant–pollinator interactions contribute to global food security?. Current Opinion in Plant Biology, 2015, 26, 72-79.	7.1	68
34	Diversity and abundance of solitary and primitively eusocial bees in an urban centre: a case study from Northampton (England). Journal of Insect Conservation, 2015, 19, 487-500.	1.4	65
35	Vegetation cover and grasslands in the vicinity accelerate development of carabid beetle assemblages on restored landfill sites. Zoology and Ecology, 2015, 25, 347-354.	0.2	6
36	Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 2014, 346, 1360-1362.	12.6	318

#	Article	IF	CITATIONS
37	Grassland Restoration on Landfill Sites in the East Midlands, <scp>United Kingdom</scp> : An Evaluation of Floral Resources and Pollinating Insects. Restoration Ecology, 2013, 21, 560-568.	2.9	52
38	Plant community composition and attributes reveal conservation implications for newly created grassland on capped landfill sites. Journal for Nature Conservation, 2013, 21, 198-205.	1.8	8
39	Historical climateâ€change influences modularity and nestedness of pollination networks. Ecography, 2013, 36, 1331-1340.	4.5	116
40	Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders. Evolution, Medicine and Public Health, 2013, 2013, 89-103.	2.5	63
41	John Tweedie and Charles Darwin in Buenos Aires. Notes and Records of the Royal Society, 2012, 66, 115-124.	0.3	3
42	Biogeography: Are Tropical Species Less Specialised?. Current Biology, 2012, 22, R914-R915.	3.9	17
43	Environmental control of reproductive phenology and the effect of pollen supplementation on resource allocation in the cleistogamous weed, Ruellia nudiflora (Acanthaceae). Annals of Botany, 2012, 109, 343-350.	2.9	30
44	Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). Trends in Ecology and Evolution, 2012, 27, 141-142.	8.7	67
45	Influence of habitat quality, landscape structure and food resources on breeding skylark (Alauda) Tj ETQq1 1 0.784 281-287.	1314 rgBT 7.5	/Overlock 28
46	Pollinator effectiveness of native and nonâ€native flower visitors to an apparently generalist Andean shrub, <i>Duranta mandonii</i> (Verbenaceae). Plant Species Biology, 2012, 27, 147-158.	1.0	31
47	Landscape structure influences pollinator movements and directly affects plant reproductive success. Oikos, 2012, 121, 562-568.	2.7	128
48	Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity. PLoS ONE, 2011, 6, e25891.	2.5	142
49	Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecology Letters, 2011, 14, 511-521.	6.4	242
50	Phenotypic selection on flowering phenology and size in two dioecious plant species with different pollen vectors. Plant Species Biology, 2011, 26, 205-212.	1.0	22
51	Population Status and Reproductive Success of an Endangered Epiphytic Orchid in a Fragmented Landscape. Biotropica, 2011, 43, 640-647.	1.6	16
52	How many flowering plants are pollinated by animals?. Oikos, 2011, 120, 321-326.	2.7	2,328
53	The conservation value of restored landfill sites in the East Midlands, UK for supporting bird communities. Biodiversity and Conservation, 2011, 20, 1879-1893.	2.6	17
54	Heliconia-hummingbird interactions in the Lesser Antilles: A geographic mosaic?. Caribbean Journal of Science, 2010, 46, 328-331.	0.3	2

#	Article	IF	CITATIONS
55	Factors determining species richness of soil seed banks in lowland ancient woodlands. Biodiversity and Conservation, 2010, 19, 1631-1648.	2.6	17
56	Assemblage and interaction structure of the anemonefish-anemone mutualism across the Manado region of Sulawesi, Indonesia. Environmental Biology of Fishes, 2010, 87, 333-347.	1.0	28
57	Fly pollination in Ceropegia (Apocynaceae: Asclepiadoideae): biogeographic and phylogenetic perspectives. Annals of Botany, 2009, 103, 1501-1514.	2.9	59
58	Effects of climate on pollination networks in the West Indies. Journal of Tropical Ecology, 2009, 25, 493-506.	1.1	53
59	Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia, 2009, 159, 757-766.	2.0	104
60	Bird pollination of Canary Island endemic plants. Die Naturwissenschaften, 2009, 96, 221-232.	1.6	39
61	Evolution of Animal Pollination. Science, 2009, 326, 808-809.	12.6	17
62	A global test of the pollination syndrome hypothesis. Annals of Botany, 2009, 103, 1471-1480.	2.9	395
63	Pollination networks and functional specialization: a test using Lesser Antillean plant–hummingbird assemblages. Oikos, 2008, 117, 789-793.	2.7	48
64	Yearâ€ŧoâ€year variation in the topology of a plant–pollinator interaction network. Oikos, 2008, 117, 1796-1807.	2.7	256
65	Ecology and Evolution of Flowers.—Lawrence D. Harder and Spencer C.H. Barrett (editors). 2007. Oxford University Press, New York. 392 pp. ISBN: 978-0-19-857085-1 (hardback, 2006) \$150 \$75. ISBN: 978-0-19-857086-8 (paperback) \$75 \$39.95. Systematic Biology, 2008, 57, 516-517.	5.6	0
66	Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 591-598.	2.6	111
67	Multiple meanings and modes: on the many ways to be a generalist flower. Taxon, 2007, 56, 717-728.	0.7	149
68	Pollination niche overlap between a parasitic plant and its host. Oecologia, 2007, 151, 473-485.	2.0	63
69	Cambio de color floral en Erysimum scoparium (Brassicaceae) y su efecto en el comportamiento del polinizador Anthophora alluadii (Hymenoptera:Apidae) en Tenerife. Entomologia Generalis, 2007, 29, 253-268.	3.1	16
70	The sweet stench of decay. New Phytologist, 2006, 172, 382-385.	7.3	29
71	Speciation: Flowering time and the Wallace Effect. Heredity, 2005, 95, 181-182.	2.6	5
72	The Pollination Ecology of an Assemblage of Grassland Asclepiads in South Africa. Annals of Botany, 2003, 92, 807-834.	2.9	177

#	Article	IF	CITATIONS
73	Latitudinal trends in plant-pollinator interactions: are tropical plants more specialised?. Oikos, 2002, 98, 340-350.	2.7	158
74	Experimental assessment of the functional morphology of inflorescences of Daucus carota (Apiaceae): testing the †fly catcher effect'. Functional Ecology, 2000, 14, 445-454.	3.6	55
75	Evidence for stabilising selection acting on flowering time in Arum maculatum (Araceae): the influence of phylogeny on adaptation. Oecologia, 1999, 119, 340-348.	2.0	58
76	Title is missing!. Plant Ecology, 1998, 139, 35-47.	1.6	163
77	Sunbird surprise for syndromes. Nature, 1998, 394, 726-727.	27.8	88
78	Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biological Journal of the Linnean Society, 1997, 62, 593-610.	1.6	79
79	Foraging strategies in the small skipper butterfly,Thymelicus flavus: when to switch?. Animal Behaviour, 1997, 53, 1009-1016.	1.9	66
80	Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biological Journal of the Linnean Society, 1997, 62, 593-610.	1.6	11
81	Reconciling Ecological Processes with Phylogenetic Patterns: The Apparent Paradox of PlantPollinator Systems. Journal of Ecology, 1996, 84, 767.	4.0	236
82	Generalization in Pollination Systems, and Why it Matters. Ecology, 1996, 77, 1043-1060.	3.2	1,553
83	Partial predispersal seed predation in <i>Lotus corniculatus</i> L. (Fabaceae). Seed Science Research, 1996, 6, 65-69.	1.7	25
84	Flowering phenology: An example of relaxation of natural selection?. Trends in Ecology and Evolution, 1992, 7, 274-276.	8.7	156
85	Insect pollinators boost the market price of culturally important crops: holly, mistletoe and the spirit of Christmas. Journal of Pollination Ecology, 0, 19, 93-97.	0.5	6
86	Pollination ecology in the 21st Century: Key questions for future research. Journal of Pollination Ecology, 0, , 8-23.	0.5	98
87	Typology in pollination biology: Lessons from an historical critique. Journal of Pollination Ecology, 0, , 1-7.	0.5	14
88	Pollination ecology of the invasive tree tobacco <i>Nicotiana glauca</i> : comparisons across native and non-native ranges. Journal of Pollination Ecology, 0, 9, 85-95.	0.5	59