Vanessa LaPointe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2820005/publications.pdf

Version: 2024-02-01

471509 454955 1,494 53 17 30 citations h-index g-index papers 61 61 61 2826 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Approaches for corneal endothelium regenerative medicine. Progress in Retinal and Eye Research, 2022, 87, 100987.	15.5	35
2	Cadherin-11 Regulates Cell Proliferation via the PDGFR $\hat{1}^2$ -ERK1/2 Signaling Pathway in Human Mesenchymal Stem Cells. Stem Cells, 2022, 40, 165-174.	3.2	6
3	Mesoporous Silica-Coated Gold Nanoparticles for Multimodal Imaging and Reactive Oxygen Species Sensing of Stem Cells. ACS Applied Nano Materials, 2022, 5, 3237-3251.	5.0	8
4	The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS ONE, 2022, 17, e0257578.	2.5	2
5	Cadherin-11 Influences Differentiation in Human Mesenchymal Stem Cells by Regulating the Extracellular Matrix Via the TGFβ1 Pathway. Stem Cells, 2022, 40, 669-677.	3.2	3
6	Soft, Dynamic Hydrogel Confinement Improves Kidney Organoid Lumen Morphology and Reduces Epithelial–Mesenchymal Transition in Culture. Advanced Science, 2022, 9, e2200543.	11.2	29
7	Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials, 2021, 267, 120449.	11.4	11
8	Increased Cell Survival of Human Primary Conjunctival Stem Cells in Dimethyl Sulfoxide-Based Cryopreservation Media. Biopreservation and Biobanking, 2021, 19, 67-72.	1.0	4
9	Win, Lose, or Tie: Mathematical Modeling of Ligand Competition at the Cell–Extracellular Matrix Interface. Frontiers in Bioengineering and Biotechnology, 2021, 9, 657244.	4.1	5
10	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells. Advanced Functional Materials, 2021, 31, 2011205.	14.9	8
11	The functional importance of the cellular and extracellular composition of the islets of Langerhans. Journal of Immunology and Regenerative Medicine, 2021, 13, 100048.	0.4	4
12	Defining the variety of cell types in developing and adult human kidneys by single-cell RNA sequencing. Npj Regenerative Medicine, 2021, 6, 45.	5.2	23
13	Sticking together: Harnessing cadherin biology for tissue engineering. Acta Biomaterialia, 2021, 134, 107-115.	8.3	2
14	Fucoidan Hydrogels Significantly Alleviate Oxidative Stress and Enhance the Endocrine Function of Encapsulated Beta Cells (Adv. Funct. Mater. 35/2021). Advanced Functional Materials, 2021, 31, 2170255.	14.9	0
15	Thiol-ene cross-linked alginate hydrogel encapsulation modulates the extracellular matrix of kidney organoids by reducing abnormal type 1a1 collagen deposition. Biomaterials, 2021, 275, 120976.	11.4	36
16	The Role of Pancreatic Alpha Cells and Endothelial Cells in the Reduction of Oxidative Stress in Pseudoislets. Frontiers in Bioengineering and Biotechnology, 2021, 9, 729057.	4.1	4
17	Nanoscale Topographies for Corneal Endothelial Regeneration. Applied Sciences (Switzerland), 2021, 11, 827.	2.5	7
18	Chorioamnionitis induces changes in ovine pulmonary endogenous epithelial stem/progenitor cells in utero. Pediatric Research, 2021, 90, 549-558.	2.3	2

#	Article	IF	CITATIONS
19	A comparative study of mesenchymal stem cells cultured as cellâ€only aggregates and in encapsulated hydrogels. Journal of Tissue Engineering and Regenerative Medicine, 2021, , .	2.7	5
20	Synthetic Materials that Affect the Extracellular Matrix via Cellular Metabolism and Responses to a Metabolic State. Frontiers in Bioengineering and Biotechnology, 2021, 9, 742132.	4.1	5
21	Single cell transcriptomics reveals the heterogeneity of the human cornea to identify novel markers of the limbus and stroma. Scientific Reports, 2021, 11, 21727.	3.3	26
22	Systematic evaluation of clinically used biomaterials to determine their suitability for fabrication of beta cell delivery devices. Journal of Immunology and Regenerative Medicine, 2021, 16, 100055.	0.4	0
23	The Role of Alpha Cells in the Self-Assembly of Bioengineered Islets. Tissue Engineering - Part A, 2020, 27, 1055-1063.	3.1	3
24	Transport and Preservation Comparison of Preloaded and Prestripped-Only DMEK Grafts. Cornea, 2020, 39, 1407-1414.	1.7	16
25	Cell culture dimensionality influences mesenchymal stem cell fate through cadherin-2 and cadherin-11. Biomaterials, 2020, 254, 120127.	11.4	13
26	Overcoming kidney organoid challenges for regenerative medicine. Npj Regenerative Medicine, 2020, 5, 8.	5.2	48
27	Building Complex Life Through Self-Organization. Tissue Engineering - Part A, 2019, 25, 1341-1346.	3.1	17
28	Oxygen and nutrient delivery in tissue engineering: Approaches to graft vascularization. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 1815-1829.	2.7	87
29	Vascular bioengineering of scaffolds derived from human discarded transplant kidneys using human pluripotent stem cell–derived endothelium. American Journal of Transplantation, 2019, 19, 1328-1343.	4.7	39
30	Redox regulation in regenerative medicine and tissue engineering: The paradox of oxygen. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2013-2020.	2.7	36
31	The Components of Bone and What They Can Teach Us about Regeneration. Materials, 2018, 11, 14.	2.9	65
32	Linking the Transcriptional Landscape of Bone Induction to Biomaterial Design Parameters. Advanced Materials, 2017, 29, 1603259.	21.0	34
33	Cell aggregation enhances bone formation by human mesenchymal stromal cells., 2017, 33, 121-129.		11
34	Directed Assembly and Development of Materialâ€Free Tissues with Complex Architectures. Advanced Materials, 2016, 28, 4032-4039.	21.0	54
35	Independent effects of the chemical and microstructural surface properties of polymer/ceramic composites on proliferation and osteogenic differentiation of human MSCs. Acta Biomaterialia, 2016, 42, 364-377.	8.3	32
36	Cellular Signaling. , 2014, , 111-148.		1

#	Article	IF	CITATIONS
37	Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. Journal of Cellular and Molecular Medicine, 2014, 18, 134-142.	3.6	23
38	Nanoscale Topography and Chemistry Affect Embryonic Stem Cell Selfâ€Renewal and Early Differentiation. Advanced Healthcare Materials, 2013, 2, 1644-1650.	7.6	32
39	Stem Cells: Nanoscale Topography and Chemistry Affect Embryonic Stem Cell Selfâ€Renewal and Early Differentiation (Adv. Healthcare Mater. 12/2013). Advanced Healthcare Materials, 2013, 2, 1538-1538.	7.6	0
40	The Changing Integrin Expression and a Role for Integrin \hat{l}^28 in the Chondrogenic Differentiation of Mesenchymal Stem Cells. PLoS ONE, 2013, 8, e82035.	2.5	20
41	Changes in embryonic stem cell colony morphology and early differentiation markers driven by colloidal crystal topographical cues., 2012, 23, 135-146.		56
42	Exploring and exploiting chemistry at the cell surface. Nature Chemistry, 2011, 3, 582-589.	13.6	282
43	Substrate stiffness affects early differentiation events in embryonic stem cells., 2009, 18, 1-14.		387
44	Effect of Traction on the Head During Vaginal Delivery on Brachial Plexus Strain Simulation in Healthcare, 2007, 2, 78.	1.2	0
45	Effect of Cardinal Movements on Fetal Mechanical Response During Simulated Shoulder Dystocia Deliveries Simulation in Healthcare, 2007, 2, 77.	1.2	0
46	241: Brachial plexus strain is minimally affected when asynclitism is resolved by operative vaginal delivery. American Journal of Obstetrics and Gynecology, 2007, 197, S79.	1.3	0
47	242: Differences in maximal arc achieved during operative vaginal delivery do not explain differential maternal injury risk between forceps and vacuum. American Journal of Obstetrics and Gynecology, 2007, 197, S79.	1.3	0
48	Measuring Neck Nerve Strain: An Experimental Investigation. , 2007, , .		0
49	Effect of mcrobert's maneuver on fetal shoulder progression through the pelvis. American Journal of Obstetrics and Gynecology, 2006, 195, S92.	1.3	2
50	Brachial plexus strain associated with delivery traction: Effect of awaiting fetal head rotation. American Journal of Obstetrics and Gynecology, 2006, 195, S119.	1.3	0
51	Comparing fetal response during stage two, external rotation and head-to-body interval in simulated shoulder dystocia deliveries. American Journal of Obstetrics and Gynecology, 2006, 195, S120.	1.3	1
52	Enhanced Microvasculature Formation and Patterning in iPSC–Derived Kidney Organoids Cultured in Physiological Hypoxia. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	7
53	Methodological approaches in aggregate formation and microscopic analysis to assess pseudoislet morphology and cellular interactions. Open Research Europe, 0, 2, 87.	2.0	0