
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple droplets on a conical fiber: formation, motion, and droplet mergers. Soft Matter, 2022, 18, 1364-1370.	2.7	10
2	Mechanical properties of 2D aggregates of oil droplets as model mono-crystals. Soft Matter, 2021, 17, 1194-1201.	2.7	4
3	Capillary levelling of immiscible bilayer films. Journal of Fluid Mechanics, 2021, 911, .	3.4	3
4	Film coating by directional droplet spreading on fibers. Physical Review Fluids, 2021, 6, .	2.5	6
5	Spontaneous Elastocapillary Winding of Thin Elastic Fibers in Contact with Bubbles. Physical Review Letters, 2021, 127, 218001.	7.8	1
6	Writhing and hockling instabilities in twisted elastic fibers. European Physical Journal E, 2021, 44, 149.	1.6	2
7	Self-organisation and convection of confined magnetotactic bacteria. Scientific Reports, 2020, 10, 13578.	3.3	9
8	Continuum Model Applied to Granular Analogs of Droplets and Puddles. Physical Review Letters, 2020, 125, 228001.	7.8	1
9	Symmetrization of Thin Freestanding Liquid Films via a Capillary-Driven Flow. Physical Review Letters, 2020, 124, 184502.	7.8	6
10	Rearrangement of two dimensional aggregates of droplets under compression: Signatures of the energy landscape from crystal to glass. Physical Review Research, 2020, 2, .	3.6	8
11	Surface energy of strained amorphous solids. Nature Communications, 2018, 9, 982.	12.8	53
12	Liquid dewetting under a thin elastic film. Soft Matter, 2018, 14, 3557-3562.	2.7	5
13	Adsorption-induced slip inhibition for polymer melts on ideal substrates. Nature Communications, 2018, 9, 1172.	12.8	11
14	Droplets Capped with an Elastic Film Can Be Round, Elliptical, or Nearly Square. Physical Review Letters, 2018, 121, 248004.	7.8	9
15	Glass transition at interfaces. Europhysics News, 2017, 48, 24-28.	0.3	6
16	Elastocapillary bending of microfibers around liquid droplets. Soft Matter, 2017, 13, 720-724.	2.7	20
17	Liquid droplets on a free-standing glassy membrane: Deformation through the glass transition. European Physical Journal E, 2017, 40, 69.	1.6	11
18	Liquid Droplets Act as "Compass Needles―for the Stresses in a Deformable Membrane. Physical Review Letters, 2017, 118, 198002.	7.8	17

#	Article	IF	CITATIONS
19	Why can't you separate interleaved books?. Physics Today, 2016, 69, 74-75.	0.3	4
20	Direct Measurement of the Critical Pore Size in a Model Membrane. Physical Review Letters, 2016, 117, 257801.	7.8	12
21	Capillary Leveling of Freestanding Liquid Nanofilms. Physical Review Letters, 2016, 117, 167801.	7.8	8
22	Controlling Marangoni-induced instabilities in spin-cast polymer films: How to prepare uniform films. European Physical Journal E, 2016, 39, 90.	1.6	34
23	Predicting the size of droplets produced through Laplace pressure induced snap-off. Soft Matter, 2016, 12, 7398-7404.	2.7	21
24	Self-Amplification of Solid Friction in Interleaved Assemblies. Physical Review Letters, 2016, 116, 015502.	7.8	25
25	Onset of Area-Dependent Dissipation in Droplet Spreading. Physical Review Letters, 2015, 115, 046103.	7.8	4
26	Liquid Droplets on a Highly Deformable Membrane. Physical Review Letters, 2015, 115, 206101.	7.8	57
27	The effects of viscosity on the undulatory swimming dynamics of <i>C. elegans</i> . Physics of Fluids, 2015, 27, .	4.0	22
28	New section for The European Physical Journal E: "Tips and Tricks in Soft Matter and Biological Physics― European Physical Journal E, 2015, 38, 1.	1.6	0
29	Symmetry plays a key role in the erasing of patterned surface features. Applied Physics Letters, 2015, 107, 053103.	3.3	8
30	Influence of slip on the Plateau–Rayleigh instability on a fibre. Nature Communications, 2015, 6, 7409.	12.8	76
31	The nematode C. elegans as a complex viscoelastic fluid. European Physical Journal E, 2015, 38, 118.	1.6	5
32	Snap-off production of monodisperse droplets. European Physical Journal E, 2015, 38, 138.	1.6	8
33	Cooperative strings and glassy interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8227-8231.	7.1	70
34	Quantized Contact Angles in the Dewetting of a Structured Liquid. Physical Review Letters, 2014, 112, 068303.	7.8	5
35	Undulatory microswimming near solid boundaries. Physics of Fluids, 2014, 26, .	4.0	15
36	Strain rate effects on symmetric diblock copolymer liquid bridges: Order-induced stability of polymer fibres. European Physical Journal E, 2014, 37, 100.	1.6	1

#	Article	IF	CITATIONS
37	A Direct Quantitative Measure of Surface Mobility in a Glassy Polymer. Science, 2014, 343, 994-999.	12.6	192
38	When Does a Glass Transition Temperature Not Signify a Glass Transition?. ACS Macro Letters, 2014, 3, 310-314.	4.8	69
39	Direct Measurements of Drag Forces in C.Âelegans Crawling Locomotion. Biophysical Journal, 2014, 107, 1980-1987.	0.5	31
40	Approach to universal self-similar attractor for the levelling of thin liquid films. Soft Matter, 2014, 10, 8608-8614.	2.7	17
41	Tangling of Tethered Swimmers: Interactions between Two Nematodes. Physical Review Letters, 2014, 113, 138101.	7.8	7
42	Capillary levelling of a cylindrical hole in a viscous film. Soft Matter, 2014, 10, 2550.	2.7	31
43	Dynamic force patterns of an undulatory microswimmer. Physical Review E, 2014, 89, 050701.	2.1	12
44	Morphology Induced Spinodal Decomposition at the Surface of Symmetric Diblock Copolymer Films. ACS Macro Letters, 2013, 2, 441-445.	4.8	11
45	Relaxation and intermediate asymptotics of a rectangular trench in a viscous film. Physical Review E, 2013, 88, 035001.	2.1	14
46	Capillary leveling of stepped films with inhomogeneous molecular mobility. Soft Matter, 2013, 9, 8297.	2.7	11
47	Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy. Materials Science and Engineering C, 2013, 33, 4295-4304.	7.3	34
48	Viscoelastic properties of the nematode <i>Caenorhabditis elegans</i> , a self-similar, shear-thinning worm. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4528-4533.	7.1	66
49	Self-Similarity and Energy Dissipation in Stepped Polymer Films. Physical Review Letters, 2012, 109, 128303.	7.8	47
50	Capillary-driven flow induced by a stepped perturbation atop a viscous film. Physics of Fluids, 2012, 24, .	4.0	30
51	Reduced Glass Transition Temperatures in Thin Polymer Films: Surface Effect or Artifact?. Physical Review Letters, 2012, 109, 055701.	7.8	151
52	Beyond Tanner's Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film. Physical Review Letters, 2012, 109, 154501.	7.8	34
53	Step Edges in Thin Films of Lamellar-Forming Diblock Copolymer. Macromolecules, 2012, 45, 9531-9538.	4.8	21
54	Crystal Growth Rate in a Blend of Long and Short Polymer Chains. Macromolecules, 2012, 45, 1688-1691.	4.8	17

#	Article	IF	CITATIONS
55	Numerical solutions of thin-film equations for polymer flows. European Physical Journal E, 2012, 35, 114.	1.6	30
56	Capillary levelling as a probe of thin film polymer rheology. Soft Matter, 2011, 7, 7832.	2.7	28
57	Nanoparticle Flotation Collectors: Mechanisms Behind a New Technology. Langmuir, 2011, 27, 10438-10446.	3.5	62
58	Understanding and predicting viscous, elastic, plastic flows. European Physical Journal E, 2011, 34, 1.	1.6	152
59	Surface nucleation in the crystallisation of polyethylene droplets. European Physical Journal E, 2011, 34, 6.	1.6	27
60	Reversible sphere-to-lamellar wetting transition at the interface of a diblock copolymer system. European Physical Journal E, 2011, 34, 51.	1.6	2
61	Dynamics of interacting edge defects in copolymer lamellae. European Physical Journal E, 2011, 34, 1-7.	1.6	7
62	Ellipsometry as a probe of crystallization in binary blends of a sphereâ€forming diblock copolymer. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 712-716.	2.1	4
63	Homogeneous Bulk, Surface, and Edge Nucleation in Crystalline Nanodroplets. Physical Review Letters, 2010, 105, 237801.	7.8	72
64	Squeezing and Detachment of Living Cells. Biophysical Journal, 2010, 99, 3555-3562.	0.5	18
65	Swelling molecular entanglement networks in polymer glasses. Physical Review E, 2010, 82, 021802.	2.1	8
66	Plateau-Rayleigh instability in a torus: formation and breakup of a polymer ring. Soft Matter, 2010, 6, 1258.	2.7	56
67	Hole nucleation in free-standing polymer membranes: the effects of varying molecular architecture. Soft Matter, 2010, 6, 5547.	2.7	15
68	Ordering of a lamella-forming fluid near an interface. Physical Review E, 2009, 80, 051803.	2.1	12
69	Spreading of diblock copolymer droplets: A probe of polymer micro-rheology. European Physical Journal E, 2009, 29, 239-244.	1.6	9
70	Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique. European Physical Journal E, 2009, 30, 117-21.	1.6	38
71	Effect of atmosphere on reductions in the glass transition of thin polystyrene films. European Physical Journal E, 2008, 27, 375-377.	1.6	49
72	Kinetics of layer hopping in a diblock copolymer lamellar phase. European Physical Journal E, 2008, 27, 407-411.	1.6	13

#	Article	IF	CITATIONS
73	Reply to comment on "The properties of free polymer surfaces and their effect upon the glass transition temperature of thin polystyrene films" by S.A. Hutcheson and G.B. McKenna. European Physical Journal E, 2007, 22, 287-291.	1.6	13
74	Droplet Shape of an Anisotropic Liquid. Physical Review Letters, 2006, 97, 204502.	7.8	36
75	Ellipsometry as a probe of crystallization kinetics in thin diblock copolymer films. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3448-3452.	2.1	20
76	Spinodal wrinkling in thin-film poly(ethylene oxide)/polystyrene bilayers. European Physical Journal E, 2006, 19, 423-432.	1.6	18
77	Measurement of adhesion energies and Young's modulus in thin polymer films using a novel axi-symmetric peel test geometry. European Physical Journal E, 2006, 19, 453-459.	1.6	21
78	Confinement Effects in Polymer Crystal Nucleation from the Bulk to Few-Chain Systems. Physical Review Letters, 2006, 97, 247802.	7.8	69
79	Crystal nucleation of polymers confined to droplets: Memory effects. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3438-3443.	2.1	56
80	Chain Entanglement in Thin Freestanding Polymer Films. Physical Review Letters, 2005, 94, 127801.	7.8	213
81	Inelastic neutron scattering for investigating the dynamics of confined glass-forming liquids. Journal of Non-Crystalline Solids, 2005, 351, 2657-2667.	3.1	51
82	Homogeneous Crystallization of Poly(Ethylene Oxide) Confined to Droplets: The Dependence of the Crystal Nucleation Rate on Length Scale and Temperature. Physical Review Letters, 2004, 92, 255509.	7.8	178
83	PEO Penetration into Water-Plasticized Poly(vinylphenol) Thin Films. Macromolecules, 2004, 37, 494-500.	4.8	4
84	Crystallization kinetics and crystal morphology in thin poly(ethylene oxide) films. European Physical Journal E, 2003, 11, 191-198.	1.6	74
85	Direct visualisation of homogeneous and heterogeneous crystallisation in an ensemble of confined domains of poly(ethylene oxide). European Physical Journal E, 2003, 12, 111-117.	1.6	82
86	lon crater healing and variable temperature ellipsometry as complementary probes for the glass transition in thin polymer films. European Physical Journal E, 2003, 12, 81-85.	1.6	6
87	First inelastic neutron scattering studies on thin free standing polymer films. European Physical Journal E, 2003, 12, 93-96.	1.6	17
88	Differential pressure experiment to probe hole growth in freely standing polymer films. Review of Scientific Instruments, 2003, 74, 2796-2804.	1.3	14
89	Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Physical Review E, 2001, 63, 031801.	2.1	338
90	Crystal growth rate in ultrathin films of poly(ethylene oxide). Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2615-2621.	2.1	57

#	Article	IF	CITATIONS
91	Sub-glass-transition temperature interface formation between an immiscible glass rubber pair. Journal of Polymer Science, Part B: Polymer Physics, 2001, 39, 2664-2670.	2.1	20
92	Changes in the Morphology of Self-Assembled Polystyrene Microsphere Monolayers Produced by Annealing. Journal of Colloid and Interface Science, 2001, 243, 143-155.	9.4	20
93	The glass transition in thin polymer films. Advances in Colloid and Interface Science, 2001, 94, 167-195.	14.7	741
94	Instabilities in thin polymer films: from pattern formation to rupture. Macromolecular Symposia, 2000, 159, 143-150.	0.7	16
95	Dispersion-Driven Morphology of Mechanically Confined Polymer Films. Physical Review Letters, 1999, 82, 1486-1489.	7.8	54
96	Hole formation and growth in freely standing polystyrene films. Physical Review E, 1999, 59, 2153-2156.	2.1	73
97	Mechanical confinement effects on the phase separation morphology of polymer blend thin films. Physical Review E, 1998, 57, 5811-5817.	2.1	39
98	Brillouin light scattering studies of the mechanical properties of thin freely standing polystyrene films. Physical Review E, 1998, 58, 6109-6114.	2.1	116
99	Interface and chain confinement effects on the glass transition temperature of thin polymer films. Physical Review E, 1997, 56, 5705-5716.	2.1	739
100	Phase separation morphology of spin-coated polymer blend thin films. Physica A: Statistical Mechanics and Its Applications, 1997, 239, 87-94.	2.6	87
101	Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films. Physical Review Letters, 1996, 77, 2002-2005.	7.8	1,028
102	Brillouin light scattering studies of the mechanical properties of polystyrene/polyisoprene multilayered thin films. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 3009-3016.	2.1	31
103	Phase separation morphology of thin films of polystyrene/polyisoprene blends. Journal of Polymer Science, Part B: Polymer Physics, 1996, 34, 3017-3024.	2.1	45
104	Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films. Physical Review Letters, 1996, 77, 4108-4108.	7.8	41
105	Stretching a Solid Modifies its Wettability $\hat{a} \in \mid$ Or Does it?. ChemistryViews, 0, , .	0.0	1