Jeffrey Johnston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818963/publications.pdf

Version: 2024-02-01

87888 95266 5,133 112 38 68 citations g-index h-index papers 164 164 164 4360 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Case Study in Biomimetic Total Synthesis:Â Polyolefin Carbocyclizations to Terpenes and Steroids. Chemical Reviews, 2005, 105, 4730-4756.	47.7	438
2	Chiral Proton Catalysis:Â A Catalytic Enantioselective Direct Aza-Henry Reaction. Journal of the American Chemical Society, 2004, 126, 3418-3419.	13.7	348
3	Umpolung reactivity in amide and peptide synthesis. Nature, 2010, 465, 1027-1032.	27.8	271
4	Enantioselective and Diastereoselective Mukaiyamaâ^'Michael Reactions Catalyzed by Bis(oxazoline) Copper(II) Complexes. Journal of the American Chemical Society, 2001, 123, 4480-4491.	13.7	220
5	Achiral Counterion Control of Enantioselectivity in a BrÃʻnsted Acid-Catalyzed Iodolactonization. Journal of the American Chemical Society, 2012, 134, 6068-6071.	13.7	175
6	A Diastereo- and Enantioselective Synthesis of $\hat{l}\pm$ -Substituted <i>syn</i> - $\hat{l}\pm$, \hat{l}^2 -Diamino Acids. Journal of the American Chemical Society, 2008, 130, 5866-5867.	13.7	153
7	Chiral Proton Catalysis: Enantioselective Brønsted Acid Catalyzed Additions of Nitroacetic Acid Derivatives as Glycine Equivalents. Journal of the American Chemical Society, 2007, 129, 3466-3467.	13.7	143
8	The Brønsted Acid-Catalyzed Direct Aza-Darzens Synthesis of N-Alkylcis-Aziridines. Journal of the American Chemical Society, 2004, 126, 1612-1613.	13.7	139
9	Catalytic, enantioselective synthesis of stilbene cis-diamines: A concise preparation of (â^')-Nutlin-3, a potent p53/MDM2 inhibitor. Chemical Science, 2011, 2, 1076.	7.4	115
10	Enantioselective Small Molecule Synthesis by Carbon Dioxide Fixation using a Dual Brønsted Acid/Base Organocatalyst. Journal of the American Chemical Society, 2015, 137, 7302-7305.	13.7	114
11	Catalytic Enantioselective Michael Additions to Unsaturated Ester Derivatives Using Chiral Copper(II) Lewis Acid Complexes. Organic Letters, 1999, 1, 865-868.	4.6	106
12	Bifunctional Asymmetric Catalysis: Amplification of BrÃ, nsted Basicity Can Orthogonally Increase the Reactivity of a Chiral BrÃ, nsted Acid. Journal of the American Chemical Society, 2010, 132, 2880-2882.	13.7	106
13	Brønsted Acid-Promoted Olefin Aziridination and Formalanti-Aminohydroxylation. Journal of the American Chemical Society, 2005, 127, 1354-1355.	13.7	103
14	Free Radical-Mediated Aryl Amination and Its Use in a Convergent $[3+2]$ Strategy for Enantioselective Indoline $\hat{l}\pm$ -Amino Acid Synthesis. Journal of the American Chemical Society, 2003, 125, 163-168.	13.7	95
15	VNI Cures Acute and Chronic Experimental Chagas Disease. Journal of Infectious Diseases, 2013, 208, 504-511.	4.0	91
16	A diastereo- and enantioselective synthesis of \hat{l} ±-substituted anti- \hat{l} ±, \hat{l} 2-diaminophosphonic acid derivatives. Chemical Communications, 2008, , 4177.	4.1	84
17	To Protonate or Alkylate? Stereoselective BrÃansted Acid Catalysis of CC Bond Formation Using Diazoalkanes. Angewandte Chemie - International Edition, 2010, 49, 2290-2298.	13.8	83
18	BrÃ, nsted Acid Catalyzed Phosphoramidic Acid Additions to Alkenes: Diastereo- and Enantioselective Halogenative Cyclizations for the Synthesis of $\langle i \rangle C \langle i \rangle$ - and $\langle i \rangle P \langle i \rangle$ -Chiral Phosphoramidates. Journal of the American Chemical Society, 2014, 136, 14734-14737.	13.7	83

#	Article	IF	CITATIONS
19	Mdm2 and Aurora Kinase A Inhibitors Synergize to Block Melanoma Growth by Driving Apoptosis and Immune Clearance of Tumor Cells. Cancer Research, 2015, 75, 181-193.	0.9	76
20	A Formal Enantioselective Acetate Mannich Reaction: The Nitro Functional Group as a Traceless Agent for Activation and Enantiocontrol in the Synthesis of \hat{I}^2 -Amino Acids. Organic Letters, 2008, 10, 4397-4400.	4.6	71
21	Chiral BrÃ,nsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of <i>sec</i> -Alkyl-3-Substituted Indoles. Organic Letters, 2010, 12, 5744-5747.	4.6	70
22	Stereocontrolled Elaboration of Natural (\hat{a}^{-})-Polycavernoside A, a Powerfully Toxic Metabolite of the Red AlgaPolycavernosatsudai. Journal of the American Chemical Society, 2000, 122, 619-631.	13.7	69
23	Enantioselective Synthesis of α-Oxy Amides via Umpolung Amide Synthesis. Journal of the American Chemical Society, 2012, 134, 15233-15236.	13.7	63
24	RYR2 Channel Inhibition Is the Principal Mechanism of Flecainide Action in CPVT. Circulation Research, 2021, 128, 321-331.	4.5	56
25	Total Synthesis of the <i>Lycopodium</i> Alkaloid (+)-Serratezomine A. Journal of the American Chemical Society, 2009, 131, 3470-3471.	13.7	55
26	Alkene Diamination Using Electron-Rich Amines: Hypervalent Iodine-Promoted Inter-/Intramolecular C–N Bond Formation. Organic Letters, 2014, 16, 3804-3807.	4.6	54
27	Catalytic, Enantioselective Synthesis of Cyclic Carbamates from Dialkyl Amines by CO ₂ -Capture: Discovery, Development, and Mechanism. Journal of the American Chemical Society, 2019, 141, 618-625.	13.7	53
28	Discovery of competing anaerobic and aerobic pathways in umpolung amide synthesis allows for site-selective amide $\langle \sup 18 \langle \sup \rangle$ O-labeling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 44-46.	7.1	52
29	Preparation of (â^')-Nutlin-3 Using Enantioselective Organocatalysis at Decagram Scale. Journal of Organic Chemistry, 2013, 78, 10605-10616.	3.2	52
30	Single Stereodifferentiation Associated with Carbon Atom Insertion during the Oxonium Ion-Initiated Pinacol Rearrangement of Dihydrofuranyl and Dihydropyranyl Carbinols. Journal of Organic Chemistry, 1997, 62, 1702-1712.	3.2	51
31	Unnatural verticilide enantiomer inhibits type 2 ryanodine receptor-mediated calcium leak and is antiarrhythmic. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4810-4815.	7.1	45
32	Chiral proton catalysis of secondary nitroalkane additions to azomethine: synthesis of a potent GlyT1 inhibitor. Chemical Communications, 2012, 48, 5578.	4.1	44
33	Oxidative Inter-/Intermolecular Alkene Diamination of Hydroxy Styrenes with Electron-Rich Amines. Organic Letters, 2015, 17, 2558-2561.	4.6	43
34	Umpolung Amide Synthesis Using Substoichiometric $\langle i \rangle N \langle i \rangle$ -lodosuccinimide (NIS) and Oxygen as a Terminal Oxidant. Organic Letters, 2014, 16, 4714-4717.	4.6	42
35	IAN-Amines: Direct Entry to a Chiral C2-Symmetric Zirconium(IV) \hat{I}^2 -Diketimine Complex Financial support has been provided by a GAANN Fellowship to S.B.C. (2001) and by Indiana University. IAN-amines are amines that are derived from Isoquinoline and 2-Amino Naphthalene Angewandte Chemie - International Edition, 2002, 41, 345.	13.8	41
36	Organocatalytic, Diastereo- and Enantioselective Synthesis of Nonsymmetric ⟨i⟩cis⟨ i⟩-Stilbene Diamines: A Platform for the Preparation of Single-Enantiomer ⟨i⟩cis⟨ i⟩-Imidazolines for Protein–Protein Inhibition. Journal of Organic Chemistry, 2014, 79, 6913-6938.	3.2	41

#	Article	IF	Citations
37	Enantioselective synthesis of $\scp>d-l\pm-amino$ amides from aliphatic aldehydes. Chemical Science, 2015, 6, 2590-2595.	7.4	41
38	Enantioselective Synthesis of \hat{l}^2 -Fluoro Amines via \hat{l}^2 -Amino \hat{l}_2 -Fluoro Nitroalkanes and a Traceless Activating Group Strategy. Journal of the American Chemical Society, 2016, 138, 13794-13797.	13.7	41
39	Synthesis of the ABC- and D-Ring Systems of the Indole Alkaloid Ambiguine G. Organic Letters, 2007, 9, 5027-5029.	4.6	40
40	A convergent synthesis of 1,3,4-oxadiazoles from acyl hydrazides under semiaqueous conditions. Chemical Science, 2017, 8, 3187-3191.	7.4	38
41	Free Radical-Mediated Aryl Amination:  Convergent Two- and Three-Component Couplings to Chiral 2,3-Disubstituted Indolines. Journal of Organic Chemistry, 2008, 73, 3040-3046.	3.2	37
42	Total Synthesis of the Chlorineâ€Containing Hapalindolesâ€K, A, and G. Angewandte Chemie - International Edition, 2011, 50, 7641-7644.	13.8	37
43	Biomimetic Desymmetrization of a Carboxylic Acid. Journal of the American Chemical Society, 2018, 140, 1998-2001.	13.7	37
44	Free Radical-Mediated Vinyl Amination:  Access toN,N-Dialkyl Enamines and Their β-Stannyl and β-Thio Derivatives. Organic Letters, 2002, 4, 4197-4200.	4.6	36
45	IAN Amines: ChiralC2-Symmetric Zirconium(IV) Complexes from Readily Modified Axially ChiralC1-Symmetric β-Diketimines. Organometallics, 2004, 23, 2238-2250.	2.3	36
46	Synthesis and biological evaluation of flavonoids and related compounds as gastroprotective agents. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 995-998.	2.2	35
47	Organocatalytic, Enantioselective Synthesis of VNI: A Robust Therapeutic Development Platform for Chagas, a Neglected Tropical Disease. Organic Letters, 2012, 14, 6322-6325.	4.6	35
48	The First Azacyclopentenyl Carbinyl Radical Isomerizations (ACCRI):Â Independent Use of Steric and Electronic (Polarization) Effects as Gating Elements. Journal of the American Chemical Society, 2003, 125, 7266-7271.	13.7	34
49	On-Demand Complex Peptide Synthesis: An Aspirational (and Elusive?) Goal for Peptide Synthesis. Journal of the American Chemical Society, 2016, 138, 14160-14169.	13.7	33
50	On the Nature of Rate Acceleration in the Synthesis and Fragmentation of Triazolines by Brønsted Acid:  Secondary Catalysis by Water (Hydronium Triflate). Journal of the American Chemical Society, 2008, 130, 2323-2328.	13.7	32
51	Origins of Selectivity in Brønsted Acid-Promoted Diazoalkaneâ^'Azomethine Reactions (The Aza-Darzens) Tj ETQo	₁ 1 ₄ .0.784	13
52	A Unified Approach to the Four Azaindoline Families by Inter-/Intramolecular Annulative Diamination of Vinylpyridines. Organic Letters, 2015, 17, 3806-3809.	4.6	32
53	Canvass: A Crowd-Sourced, Natural-Product Screening Library for Exploring Biological Space. ACS Central Science, 2018, 4, 1727-1741.	11.3	32
54	Free radical-mediated vinyl amination: a mild, general pyrrolidinyl enamine synthesis. Tetrahedron, 2003, 59, 8877-8888.	1.9	31

#	Article	IF	CITATIONS
55	Nonconventional Carbon Additions to Azomethines. Aryl Amination/Indoline Synthesis by Direct Aryl Radical Addition to Azomethine Nitrogen. Organic Letters, 2001, 3, 1009-1011.	4.6	27
56	Silyl Imine Electrophiles in Enantioselective Catalysis: A Rosetta Stone for Peptide Homologation, Enabling Diverse <i>N</i> -Protected Aryl Glycines from Aldehydes in Three Steps. Organic Letters, 2014, 16, 3146-3149.	4.6	27
57	Development of an Intermittent-Flow Enantioselective Aza-Henry Reaction Using an Arylnitromethane and Homogeneous BrÃnsted Acid–Base Catalyst with Recycle. Organic Process Research and Development, 2016, 20, 215-226.	2.7	24
58	Enantioselective Organocatalytic Amine-Isocyanate Capture-Cyclization: Regioselective Alkene lodoamination for the Synthesis of Chiral Cyclic Ureas. ACS Catalysis, 2018, 8, 11926-11931.	11.2	24
59	Studies directed toward the total synthesis of polycavernoside A. Enantioselective synthesis of the disaccharide component. Tetrahedron Letters, 1995, 36, 4341-4344.	1.4	23
60	Enantioselective Addition of Bromonitromethane to Aliphatic <i>N</i> -Boc Aldimines Using a Homogeneous Bifunctional Chiral Organocatalyst. ACS Catalysis, 2015, 5, 6559-6562.	11.2	23
61	Geometric Restraint Drives On- and Off-pathway Catalysis by the Escherichia coli Menaquinol:Fumarate Reductase. Journal of Biological Chemistry, 2011, 286, 3047-3056.	3.4	20
62	Total Synthesis of the Lycopodium Alkaloid Serratezomine A Using Free Radical-Mediated Vinyl Amination to Prepare a 1 ² -Stannyl Enamine Linchpin. Journal of Organic Chemistry, 2013, 78, 822-843.	3.2	20
63	A one-pot amidation of primary nitroalkanes. Chemical Communications, 2016, 52, 152-155.	4.1	20
64	Preparation of H,4 PyrrolidineQuin-BAM (PBAM). Organic Syntheses, 2012, 89, 380.	1.0	20
65	Synthesis of an Advanced Intermediate en Route to the Mitomycin Natural Products. Organic Letters, 2006, 8, 6047-6049.	4.6	18
66	Diastereo- and enantioselective additions of \hat{l} ±-nitro esters to imines for $\langle i \rangle$ anti $\langle i \rangle$ - \hat{l} ±, \hat{l} 2-diamino acid synthesis with \hat{l} ±-alkyl-substitution. Chemical Science, 2018, 9, 2336-2339.	7.4	18
67	Exercise Causes Arrhythmogenic Remodeling of Intracellular Calcium Dynamics in Plakophilin-2–Deficient Hearts. Circulation, 2022, 145, 1480-1496.	1.6	18
68	Stereochemical Models for the Enantiocontrolled Construction of Fully Functionalized C Rings via Intramolecular Aldolization in Advanced Precursors to Paclitaxel. Journal of Organic Chemistry, 1998, 63, 8491-8509.	3.2	17
69	Rapid synthesis of cyclic oligomeric depsipeptides with positional, stereochemical, and macrocycle size distribution control. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14893-14897.	7.1	17
70	Preparation of a protected phosphoramidon precursor via an H-Phosphonate coupling strategy. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5602-5604.	2.2	15
71	A Preparation of Enantiomerically Enriched Axially Chiral β-Diketimines: Synthesis of (â°')- and (+)-IAN Amine. Organic Letters, 2008, 10, 2445-2447.	4.6	14
72	A Chiral <i>N</i> àâ€Phosphinyl Phosphoramide: Another Offspring for the Sage Phosphoric Acid Progenitor. Angewandte Chemie - International Edition, 2011, 50, 2890-2891.	13.8	14

#	Article	IF	CITATIONS
73	Continuous Platform To Generate Nitroalkanes On-Demand (in Situ) Using Peracetic Acid-Mediated Oxidation in a PFA Pipes-in-Series Reactor. Organic Process Research and Development, 2018, 22, 971-977.	2.7	14
74	Use of the Vicinal Element Effect for Regiochemical Control of Quinone Substitutions and Its Implication for Convergent Mitomycin Construction. Organic Letters, 2001, 3, 3695-3697.	4.6	13
75	A Remarkably Facile Zirconium(IV) \hat{a}^{\dagger} Aluminum(III) \hat{l}^2 -Diketiminate Transmetalation That Also Results in a More Active Olefin Polymerization Catalyst upon Activation. Organometallics, 2004, 23, 5885-5888.	2.3	13
76	Direct Observation and Analysis of the Halo-Amino-Nitro Alkane Functional Group. CheM, 2019, 5, 1248-1264.	11.7	13
77	Br $ ilde{A}_{j}$ nsted acid activation of \hat{l} ±-diazo imide: a syn-selective glycolate Mannich reaction. Chemical Communications, 2009, , 6195.	4.1	12
78	Stereoselective synthesis of complex polycyclic aziridines: use of the BrÃ,nsted acid-catalyzed aza-Darzens reaction to prepare an orthogonally protected mitomycin C intermediate with maximal convergency. Chemical Communications, 2011, 47, 3975.	4.1	12
79	MDM2 Antagonists Counteract Drug-Induced DNA Damage. EBioMedicine, 2017, 24, 43-55.	6.1	12
80	The inverted ketene synthon: a double umpolung approach to enantioselective \hat{l}^2 (sup>2,3 (/sup>-amino amide synthesis. Chemical Science, 2019, 10, 1138-1143.	7.4	12
81	Adaptation of a Small-Molecule Hydrogen-Bond Donor Catalyst to an Enantioselective Hetero-Diels–Alder Reaction Hypothesized for Brevianamide Biosynthesis. Organic Letters, 2015, 17, 880-883.	4.6	11
82	Evidence for Ion-Templation During Macrocyclooligomerization of Depsipeptides. Journal of the American Chemical Society, 2018, 140, 4560-4568.	13.7	11
83	Enantioenriched Axially Chiral b-Diketimines: Determination of the IAN-amine Barrier to Atropisomerization. Heterocycles, 2004, 62, 223.	0.7	11
84	Enantioselective iodolactonization to prepare $\hat{l}\mu\text{-lactone}$ rings using hypervalent iodine. Chemical Science, 2022, 13, 7318-7324.	7.4	11
85	Application of an S â†' O Allylic Transposition in the Context of a Bridgehead Olefinic System. New Opportunities for the Structural Modification of Bicyclo[6.2.1]undecanes via Transannular Ring Closure. Journal of Organic Chemistry, 1998, 63, 129-136.	3.2	10
86	Fluorine-induced diastereodivergence discovered in an equally rare enantioselective <i>syn</i> -aza-Henry reaction. Chemical Science, 2022, 13, 2614-2623.	7.4	9
87	1,3,4-Oxadiazole and Heteroaromatic-Fused 1,2,4-Triazole SynthesisÂ-Using Diverted Umpolung Amide Synthesis. Synthesis, 2017, 49, 4670-4675.	2.3	8
88	Use of comparative triazolinium triflate fragmentation rates as a tool to assay relative competency of BrÃ,nsted bases in Nâ†'N proton transfer. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 4971-4973.	2.2	7
89	Substituted Imidazoline Synthesis: A Diastereo- and Enantioselective aza-Henry Route to a Human Proteasome Modulator. Organic Letters, 2020, 22, 8496-8499.	4.6	7
90	Enantioselective Synthesis of \hat{l}_{\pm} -Bromonitroalkanes for Umpolung Amide Synthesis: Preparation of tert-Butyl ((1R)-1-(4-(benzyloxy)phenyl)-2-bromo-2-nitroethyl)carbamate. Organic Syntheses, 2016, 93, 88-99.	1.0	7

#	Article	IF	Citations
91	Chiral Proton Catalysis: pKaDetermination for a BAM-HX BrÃ,nsted Acid. Synlett, 2006, 2006, 0147-0149.	1.8	6
92	DFT-Based Stereochemical Rationales for the Bifunctional Brønsted Acid/Base-Catalyzed Diastereodivergent and Enantioselective aza-Henry Reactions of α-Nitro Esters. Journal of Organic Chemistry, 2021, 86, 15606-15617.	3.2	6
93	New Extensions of the Anionic Oxy-Cope/Intramolecular S _N ' Reaction Cascade. Synthetic Communications, 1998, 28, 1509-1515.	2.1	5
94	The Formation of Impossible Rings in Macrocyclooligomerizations for Cyclodepsipeptide Synthesis: The 18-from-12 Paradox. Journal of Organic Chemistry, 2021, 86, 7904-7919.	3.2	5
95	Ring Size as an Independent Variable in Cyclooligomeric Depsipeptide Antiarrhythmic Activity. ACS Medicinal Chemistry Letters, 2021, 12, 1942-1947.	2.8	5
96	Brønsted acid-promoted azide–olefin [3 + 2] cycloadditions for the preparation of contiguous aminopolyols: The importance of disiloxane ring size to a diastereoselective, bidirectional approach to zwittermicin A. Beilstein Journal of Organic Chemistry, 2010, 6, 1206-1210.	2.2	4
97	Resolving Bromonitromethane Sourcing by Synthesis: Preparation at the Decagram Scale. Journal of Organic Chemistry, 2022, 87, 5451-5455.	3.2	2
98	RyR2 Inhibition by Flecainide Determines Antiarrhythmic Activity in CPVT. Biophysical Journal, 2020, 118 , $567a$.	0.5	1
99	Free Radical Mediated Vinyl Amination: Access-to N,N-Dialkyl Enamines and Their \hat{l}^2 -Stannyl and \hat{l}^2 -Thio Derivatives ChemInform, 2003, 34, no.	0.0	0
100	Free Radical-Mediated Aryl Amination and Its Use in a Convergent $[3 + 2]$ Strategy for Enantioselective Indoline \hat{l}_{\pm} -Amino Acid Synthesis ChemInform, 2003, 34, no.	0.0	0
101	The First Azacyclopentenyl Carbinyl Radical Isomerizations (ACCRI): Independent Use of Steric and Electronic (Polarization) Effects as Gating Elements ChemInform, 2003, 34, no.	0.0	0
102	Free Radical-Mediated Vinyl Amination: A Mild, General Pyrrolidinyl Enamine Synthesis ChemInform, 2004, 35, no.	0.0	0
103	The Broensted Acid Catalyzed Direct Aza-Darzens Synthesis of N-Alkyl cis-Aziridines ChemInform, 2004, 35, no.	0.0	0
104	Broensted Acid-Promoted Olefin Aziridination and Formal anti-Aminohydroxylation ChemInform, 2005, 36, no.	0.0	0
105	Nonconventional Carbon Additions to Azomethines. Aryl Amination/Indoline Synthesis by Direct Aryl Radical Addition to Azomethine Nitrogen ChemInform, 2001, 32, 128-128.	0.0	0
106	Serratezomine A. , 2012, , 131-155.		0
107	Cluster Preface: Alkene Halofunctionalization. Synlett, 2018, 29, 399-400.	1.8	0
108	The Mechanism of Flecainide Action in CPVT Involves a Direct Effect on RyR2. Biophysical Journal, 2018, 114, 117a.	0.5	0

#	Article	IF	CITATIONS
109	PREPARATION OF ISOPROPYL 2-DIAZOACETYL (PHENYL) CARBAMATE. Organic Syntheses, 2011, 88, 212.	1.0	O
110	Abstract B12: Synergistic anticancer activity of Aurora A kinase and MDM2 antagonists in melanoma. , 2015, , .		0
111	PREPARATION OF ISOPROPYL 2-DIAZOACETYL (PHENYL) CARBAMATE. Organic Syntheses, 2011, 88, 212-223.	1.0	O
112	Abstract 15420: Resolving a Controversy: Inhibition of Cardiac Ryanodine Receptors is the Principal Mechanism of Antiarrhythmic Action of Flecainide in Catecholaminergic Polymorphic Ventricular Tachycardia. Circulation, 2020, 142, .	1.6	0