
Ben A Croker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818826/publications.pdf Version: 2024-02-01

REN A CROKER

#	Article	IF	CITATIONS
1	SOCS3 negatively regulates IL-6 signaling in vivo. Nature Immunology, 2003, 4, 540-545.	14.5	743
2	GENETIC ANALYSIS OF HOST RESISTANCE: Toll-Like Receptor Signaling and Immunity at Large. Annual Review of Immunology, 2006, 24, 353-389.	21.8	713
3	SOCS regulation of the JAK/STAT signalling pathway. Seminars in Cell and Developmental Biology, 2008, 19, 414-422.	5.0	521
4	RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nature Communications, 2015, 6, 6282.	12.8	514
5	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	28.9	492
6	SOCS3 Is a Critical Physiological Negative Regulator of G-CSF Signaling and Emergency Granulopoiesis. Immunity, 2004, 20, 153-165.	14.3	257
7	NLRP1 Inflammasome Activation Induces Pyroptosis of Hematopoietic Progenitor Cells. Immunity, 2012, 37, 1009-1023.	14.3	257
8	Cholesterol 25â€Hydroxylase inhibits <scp>SARS</scp> oVâ€2 and other coronaviruses by depleting membrane cholesterol. EMBO Journal, 2020, 39, e106057.	7.8	203
9	SOCS-3 negatively regulates innate and adaptive immune mechanisms in acute IL-1-dependent inflammatory arthritis. Journal of Clinical Investigation, 2006, 116, 1571-1581.	8.2	184
10	The Role of Neutrophils during Mild and Severe Influenza Virus Infections of Mice. PLoS ONE, 2011, 6, e17618.	2.5	155
11	Phosphatidylserine externalization, "necroptotic bodies―release, and phagocytosis during necroptosis. PLoS Biology, 2017, 15, e2002711.	5.6	148
12	A key role for G-CSF–induced neutrophil production and trafficking during inflammatory arthritis. Blood, 2008, 112, 5193-5201.	1.4	141
13	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	16.2	133
14	Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-11². Journal of Experimental Medicine, 2015, 212, 927-938.	8.5	120
15	The Rac2 Guanosine Triphosphatase Regulates B Lymphocyte Antigen Receptor Responses and Chemotaxis and Is Required for Establishment of B-1a and Marginal Zone B Lymphocytes. Journal of Immunology, 2002, 168, 3376-3386.	0.8	115
16	Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15028-15033.	7.1	109
17	Fas-mediated neutrophil apoptosis is accelerated by Bid, Bak, and Bax and inhibited by Bcl-2 and Mcl-1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13135-13140.	7.1	98
18	Opposing roles of gp130-mediated STAT-3 and ERK-1/2 signaling in liver progenitor cell migration and proliferation. Hepatology, 2007, 45, 486-494.	7.3	94

BEN A CROKER

#	Article	IF	CITATIONS
19	An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nature Immunology, 2010, 11, 335-343.	14.5	78
20	Necroptosis directly induces the release of fullâ€length biologically active <scp>IL</scp> â€33 <i>inÂvitro</i> and in an inflammatory disease model. FEBS Journal, 2019, 286, 507-522.	4.7	77
21	Thrombocytopenia and kidney disease in mice with a mutation in the C1galt1 gene. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16442-16447.	7.1	76
22	Regulation of interleukinâ€1β by interferonâ€Î³ is species specific, limited by suppressor of cytokine signalling 1 and influences interleukinâ€17 production. EMBO Reports, 2010, 11, 640-646.	4.5	72
23	Suppressor of cytokine signaling 3 limits protection of leukemia inhibitory factor receptor signaling against central demyelination. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7859-7864.	7.1	71
24	The pseudokinase MLKL activates PAD4-dependent NET formation in necroptotic neutrophils. Science Signaling, 2018, 11, .	3.6	65
25	Selective Fc ^î ³R Co-engagement on APCs Modulates the Activity of Therapeutic Antibodies Targeting TÂCell Antigens. Cancer Cell, 2018, 33, 1033-1047.e5.	16.8	64
26	ATP-sensitive potassium channels mediate survival during infection in mammals and insects. Nature Genetics, 2007, 39, 1453-1460.	21.4	61
27	Interconversion between Tumorigenic and Differentiated States in Acute Myeloid Leukemia. Cell Stem Cell, 2019, 25, 258-272.e9.	11.1	60
28	Pyroptotic death storms and cytopenia. Current Opinion in Immunology, 2014, 26, 128-137.	5.5	55
29	Rac2â€deficient mice display perturbed Tâ€cell distribution and chemotaxis, but only minor abnormalities in T H 1 responses. Immunology and Cell Biology, 2002, 80, 231-240.	2.3	52
30	Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. Science Advances, 2021, 7, .	10.3	49
31	ENU-induced phenovariance in mice: inferences from 587 mutations. BMC Research Notes, 2012, 5, 577.	1.4	46
32	Cloning and characterization of the genes encoding the ankyrin repeat and SOCS box-containing proteins Asb-1, Asb-2, Asb-3 and Asb-4. Gene, 2000, 258, 31-41.	2.2	42
33	ILâ€6 promotes acute and chronic inflammatory disease in the absence of SOCS3. Immunology and Cell Biology, 2012, 90, 124-129.	2.3	41
34	Neutrophils Require SHP1 To Regulate IL-1β Production and Prevent Inflammatory Skin Disease. Journal of Immunology, 2011, 186, 1131-1139.	0.8	40
35	Multi-clonal SARS-CoV-2 neutralization by antibodies isolated from severe COVID-19 convalescent donors. PLoS Pathogens, 2021, 17, e1009165.	4.7	40
36	Mutations in topoisomerase IIβ result in a B cell immunodeficiency. Nature Communications, 2019, 10, 3644.	12.8	37

Ben A Croker

#	Article	IF	CITATIONS
37	Resident and Monocyte-Derived Dendritic Cells Become Dominant IL-12 Producers under Different Conditions and Signaling Pathways. Journal of Immunology, 2010, 185, 2125-2133.	0.8	36
38	Ptpn6 inhibits caspase-8- and Ripk3/Mlkl-dependent inflammation. Nature Immunology, 2020, 21, 54-64.	14.5	33
39	Cutting Edge: Blockade of Inhibitor of Apoptosis Proteins Sensitizes Neutrophils to TNF- but Not Lipopolysaccharide-Mediated Cell Death and IL-1β Secretion. Journal of Immunology, 2018, 200, 3341-3346.	0.8	31
40	lmmune response to intravenous immunoglobulin in patients with Kawasaki disease and MIS-C. Journal of Clinical Investigation, 2021, 131, .	8.2	31
41	Fight or flight. Current Opinion in Hematology, 2015, 22, 293-301.	2.5	29
42	Socs3 maintains the specificity of biological responses to cytokine signals during granulocyte and macrophage differentiation. Experimental Hematology, 2008, 36, 786-798.	0.4	28
43	Fas regulates neutrophil lifespan during viral and bacterial infection. Journal of Leukocyte Biology, 2015, 97, 321-326.	3.3	28
44	Interactions of SARS-CoV-2 envelope protein with amilorides correlate with antiviral activity. PLoS Pathogens, 2021, 17, e1009519.	4.7	27
45	Key Role of Suppressor of Cytokine Signaling 3 in Regulating gp130 Cytokine–Induced Signaling and Limiting Chondrocyte Responses During Murine Inflammatory Arthritis. Arthritis and Rheumatology, 2014, 66, 2391-2402.	5.6	25
46	A Two-Cell Model for IL-1Î ² Release Mediated by Death-Receptor Signaling. Cell Reports, 2020, 31, 107466.	6.4	21
47	β-glucan–dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biology, 2019, 17, e3000113.	5.6	20
48	Genetic analysis of innate resistance to mouse cytomegalovirus (MCMV). Briefings in Functional Genomics & Proteomics, 2005, 4, 203-213.	3.8	14
49	A motive for killing: effector functions of regulated lytic cell death. Immunology and Cell Biology, 2017, 95, 146-151.	2.3	7
50	Towards a Four-Dimensional View of Neutrophils. Methods in Molecular Biology, 2012, 844, 87-99.	0.9	6
51	NLRP1a Expression in Srebp-1a-Deficient Mice. Cell Metabolism, 2014, 19, 345-346.	16.2	6
52	Single-cell cloning of human T-cell lines reveals clonal variation in cell death responses to chemotherapeutics. Cancer Genetics, 2019, 237, 69-77.	0.4	6
53	Defining a therapeutic window for kinase inhibitors in leukemia to avoid neutropenia. Oncotarget, 2017, 8, 57948-57963.	1.8	4
54	Mlkl Pores Release Neutrophil Extracellular Traps in Necroptotic Neutrophils. Blood, 2015, 126, 2200-2200.	1.4	2

BEN A CROKER

#	Article	IF	CITATIONS
55	Neutrophil survival in the death zone. Blood, 2014, 123, 307-308.	1.4	1
56	Myelopoiesis embraces its inner weakness. Nature Immunology, 2017, 18, 953-954.	14.5	1
57	BID-ding on necroptosis in MDS. Blood, 2019, 133, 103-104.	1.4	1
58	A Two-Site Interaction Underpins TRIM25 Activation of the RIG-I Anti-Viral Response. Blood, 2014, 124, 1580-1580.	1.4	1
59	Padi4 Regulates NET Formation and Inflammatory Cell Death Downstream of Mlkl. Blood, 2018, 132, 276-276.	1.4	1
60	Non-apoptotic Cell Death Control of Neutrophil Extracellular Trap Formation. Methods in Molecular Biology, 2022, , 253-263.	0.9	1
61	Walking down the memory lane with SARSâ€CoVâ€2 B cells. Immunology and Cell Biology, 2021, 99, 796-799.	2.3	0
62	Necroptotic Death Of RIPK1-Deficient HSC Compromises Hematopoiesis. Blood, 2013, 122, 218-218.	1.4	0
63	Fas Controls Neutrophil Lifespan during Bacterial and Viral Infection. Blood, 2014, 124, 1579-1579.	1.4	0
64	Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-11². Journal of Cell Biology, 2015, 209, 2095OIA104.	5.2	0
65	Ptpn6 Inhibits IL-1 Release from Neutrophils By Regulation of Caspase-8- and Ripk3/Mlkl-Dependent Forms of Cell Death. Blood, 2018, 132, 274-274.	1.4	О