Yuriy I Mazur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818457/publications.pdf

Version: 2024-02-01

150	2,394 citations	279798	302126 39 g-index
papers	citations	h-index	g-index
152 all docs	152 docs citations	152 times ranked	2006 citing authors

#	Article	IF	CITATIONS
1	Coherent-interface-induced strain in large lattice-mismatched materials: A new approach for modeling Raman shift. Nano Research, 2022, 15, 2405-2412.	10.4	7
2	Spin-dependent analysis of homogeneous and inhomogeneous exciton decoherence in magnetic fields. Physical Review B, 2022, 105, .	3.2	O
3	Carrier Injection to In0.4Ga0.6As/GaAs Surface Quantum Dots in Coupled Hybrid Nanostructures. Crystals, 2022, 12, 319.	2.2	2
4	Study of simulations of double graded InGaN solar cell structures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2022, 40, 042203.	1.2	1
5	GaAs layer on c-plane sapphire for light emitting sources. Applied Surface Science, 2021, 542, 148554.	6.1	3
6	Indium segregation in ultra-thin $\ln(Ga)As/GaAs$ single quantum wells revealed by photoluminescence spectroscopy. Applied Physics Letters, 2021, 118, .	3.3	5
7	InAs nanostructures for solar cell: Improved efficiency by submonolayer quantum dot. Solar Energy Materials and Solar Cells, 2021, 224, 111026.	6.2	7
8	Impact of Long-Term Annealing on Photoluminescence from Ge1â^'xSnx Alloys. Crystals, 2021, 11, 905.	2.2	7
9	Conductivity-Type Conversion in Self-Assembled GeSn Stripes on Ge/Si(100) under Electric Field. ACS Applied Electronic Materials, 2021, 3, 4388-4397.	4.3	2
10	Quantitative Correlation Study of Dislocation Generation, Strain Relief, and Sn Outdiffusion in Thermally Annealed GeSn Epilayers. Crystal Growth and Design, 2021, 21, 1666-1673.	3.0	14
11	Modification of elastic deformations and analysis of structural and optical changes in Ar+-implanted AlN/GaN superlattices. Applied Nanoscience (Switzerland), 2020, 10, 2479-2487.	3.1	9
12	GaAs epitaxial growth on R-plane sapphire substrate. Journal of Crystal Growth, 2020, 548, 125848.	1.5	7
13	Strain suppressed Sn incorporation in GeSn epitaxially grown on Ge/Si(001) substrate. Applied Physics Letters, 2020, 116, .	3.3	19
14	Evolution of InAs quantum dots and wetting layer on GaAs (001): Peculiar photoluminescence near onset of quantum dot formation. Journal of Applied Physics, 2020, 127, .	2.5	9
15	Photoluminescence of InAs/GaAs quantum dots under direct two-photon excitation. Scientific Reports, 2020, 10, 10930.	3.3	8
16	Effect of indium accumulation on the growth and properties of ultrathin In(Ga)N/GaN quantum wells. Materials and Design, 2020, 190, 108565.	7.0	3
17	Investigation of the Structural and Optical Properties of Compositionally Vâ€Graded Strained In x Ga 1– x N Layers. Physica Status Solidi (B): Basic Research, 2020, 257, 1900591.	1.5	2
18	Compositionally Graded AlGaN Nanostructures: Strain Distribution and X-ray Diffraction Reciprocal Space Mapping. Crystal Growth and Design, 2020, 20, 1543-1551.	3.0	7

#	Article	IF	CITATIONS
19	Raman and Photoluminescence Study of Al,Nâ€Codoped ZnO Films Deposited at Oxygenâ€Rich Conditions by Magnetron Sputtering. Physica Status Solidi (B): Basic Research, 2020, 257, 1900788.	1.5	7
20	Impact of defects on photoexcited carrier relaxation dynamics in GeSn thin films. Journal of Physics Condensed Matter, 2020, 33, 065702.	1.8	6
21	Carrier dynamics and recombination in silicon doped InAs/GaAs quantum dot solar cells with AlAs cap layers. Semiconductor Science and Technology, 2020, 35, 115018.	2.0	3
22	Crystalline GaAs Thin Film Growth on a c-Plane Sapphire Substrate. Crystal Growth and Design, 2019, 19, 5088-5096.	3.0	17
23	Heteroepitaxy of GaP on silicon for efficient and cost-effective photoelectrochemical water splitting. Journal of Materials Chemistry A, 2019, 7, 8550-8558.	10.3	19
24	Magnetically controlled exciton transfer in hybrid quantum-dot–quantum-well nanostructures. Physical Review B, 2019, 100, .	3.2	1
25	Comparative study of photoluminescence for type-I InAs/GaAs0.89Sb0.11 and type-II InAs/GaAs0.85Sb0.15 quantum dots. Optical Materials, 2019, 98, 109479.	3.6	4
26	Local Strain and Crystalline Defects in GaN/AlGaN/GaN(0001) Heterostructures Induced by Compositionally Graded AlGaN Buried Layers. Crystal Growth and Design, 2019, 19, 200-210.	3.0	11
27	Polarization Effects in Graded AlGaN Nanolayers Revealed by Current-Sensing and Kelvin Probe Microscopy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6755-6763.	8.0	16
28	Kinetically controlled transition from 2D nanostructured films to 3D multifaceted InN nanocrystals on GaN(0001). CrystEngComm, 2018, 20, 1499-1508.	2.6	7
29	Demonstration of InAs/InGaAs/GaAs Quantum Dots-in-a-Well Mid-Wave Infrared Photodetectors Grown on Silicon Substrate. Journal of Lightwave Technology, 2018, 36, 2572-2581.	4.6	36
30	Excitation intensity and thickness dependent emission mechanism from an ultrathin InAs layer in GaAs matrix. Journal of Applied Physics, 2018, 124, .	2.5	14
31	Interplay Effect of Temperature and Excitation Intensity on the Photoluminescence Characteristics of InGaAs/GaAs Surface Quantum Dots. Nanoscale Research Letters, 2018, 13, 387.	5.7	17
32	Kinetically controlled indium surface coverage effects on PAMBE-growth of InN/GaN(0001) quantum well structures. Journal of Applied Physics, 2018, 123, 195302.	2.5	2
33	Photoluminescence Study of the Interface Fluctuation Effect for InGaAs/InAlAs/InP Single Quantum Well with Different Thickness. Nanoscale Research Letters, 2017, 12, 229.	5.7	22
34	Asymmetrical reciprocal space mapping using X-ray diffraction: a technique for structural characterization of GaN/AlN superlattices. CrystEngComm, 2017, 19, 2977-2982.	2.6	17
35	Photoconductivity Relaxation Mechanisms of InGaAs/GaAs Quantum Dot Chain Structures. Nanoscale Research Letters, 2017, 12, 183.	5.7	7
36	Fabrication of ultralow-density quantum dots by droplet etching epitaxy. Journal of Materials Research, 2017, 32, 4095-4101.	2.6	6

#	Article	IF	CITATIONS
37	Effect of well/barrier thickness ratio on strain relaxation in GaN/AlN superlattices grown on GaN/sapphire template. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	5
38	Optical and structural study of deformation states in the GaN/AlN superlattices. Journal of Applied Physics, 2017, 122, .	2.5	11
39	Optical characterization of type-I to type-II band alignment transition in GaAs/Al _{<i>x</i>} Ga _{1â^'<i>x</i>} As quantum rings grown by droplet epitaxy. Journal Physics D: Applied Physics, 2017, 50, 32LT01.	2.8	6
40	Infrared Reflectance Analysis of Epitaxial n-Type Doped GaN Layers Grown on Sapphire. Nanoscale Research Letters, 2017, 12, 397.	5.7	5
41	Carrier dynamics of InAs quantum dots with GaAs1â^'xSbx barrier layers. Applied Physics Letters, 2017, 111, .	3.3	5
42	PL of lowâ€density InAs/GaAs quantum dots with different bimodal populations. Micro and Nano Letters, 2017, 12, 599-604.	1.3	3
43	Interplay Effect of Excitation and Temperature on Carrier Transfer between Vertically Aligned InAs/GaAs Quantum Dot Pairs. Crystals, 2016, 6, 144.	2.2	4
44	Intensity-dependent nonlinearity of the lateral photoconductivity in InGaAs/GaAs dot-chain structures. Journal of Applied Physics, 2016, 119, 184303.	2.5	16
45	The continuum state in photoluminescence of type-II In0.46Al0.54As/Al0.54Ga0.46As quantum dots. Applied Physics Letters, 2016, 109, 183103.	3.3	5
46	Monolithically Integrated InAs/GaAs Quantum Dot Mid-Infrared Photodetectors on Silicon Substrates. ACS Photonics, 2016, 3, 749-753.	6.6	63
47	The Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study. Nanoscale Research Letters, 2016, 11, 252.	5.7	12
48	Si-Doped InAs/GaAs Quantum-Dot Solar Cell With AlAs Cap Layers. IEEE Journal of Photovoltaics, 2016, 6, 906-911.	2.5	16
49	X-ray Reciprocal Space Mapping of Graded Al x Ga1 â^ x N Films and Nanowires. Nanoscale Research Letters, 2016, 11, 81.	5.7	0
50	Defect-Free Self-Catalyzed GaAs/GaAsP Nanowire Quantum Dots Grown on Silicon Substrate. Nano Letters, 2016, 16, 504-511.	9.1	42
51	Ordering of InGaAs Quantum Dots Grown by Molecular Beam Epitaxy under As2 gas flux. Materials Research Society Symposia Proceedings, 2015, 1792, 1.	0.1	0
52	Coexistence of type-I and type-II band alignments in In0.46Al0.54As/Ga0.46Al0.54As self-assembled quantum dots. Applied Physics Letters, 2015, 107, 183107.	3.3	3
53	Carrier transfer in vertically stacked quantum ring-quantum dot chains. Journal of Applied Physics, 2015, 117, .	2.5	15
54	Optimisation of the dislocation filter layers in 1.3â€Î¼m InAs/GaAs quantumâ€dot lasers monolithically grown on Si substrates. IET Optoelectronics, 2015, 9, 61-64.	3.3	23

#	Article	IF	Citations
55	Nanoscale Electrostructural Characterization of Compositionally Graded Al _{<i>x</i>} Ga _{1–<i>x</i>} N Heterostructures on GaN/Sapphire (0001) Substrate. ACS Applied Materials & Diterfaces, 2015, 7, 23320-23327.	8.0	17
56	Measuring the depth profiles of strain/composition in AlGaN-graded layer by high-resolution x-ray diffraction. Journal of Applied Physics, 2014, 116 , .	2.5	17
57	Deep level centers and their role in photoconductivity transients of InGaAs/GaAs quantum dot chains. Journal of Applied Physics, 2014, 116, .	2.5	19
58	Structural and magnetic confinement of holes in the spin-polarized emission of coupled quantum ring–quantum dot chains. Physical Review B, 2014, 90, .	3.2	10
59	Selfâ€Assembly of Multiple Stacked Nanorings by Vertically Correlated Droplet Epitaxy. Advanced Functional Materials, 2014, 24, 530-535.	14.9	20
60	Swift Xe ion irradiation effect on structure and vibrational properties of undoped and Cdâ€doped ZnO films. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 1435-1438.	0.8	4
61	Low temperature magneto-photoluminescence of GaAsBi /GaAs quantum well heterostructures. Journal of Applied Physics, 2014, 115, 123518.	2.5	11
62	Mechanism of strain-influenced quantum well thickness reduction in GaN/AlN short-period superlattices. Nanotechnology, 2014, 25, 245602.	2.6	18
63	Effects of AlGaAs cladding layers on the luminescence of GaAs/GaAs _{1â^²<i>x</i>xxxx} /GaAs heterostructures. Nanotechnology, 2014, 25, 035702.	2.6	9
64	Spatial distribution of free carrier concentration in vertical GaN Gunnâ€diode structures studied by confocal microâ€Raman spectroscopy and Kelvin probe force microscopy. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 269-273.	0.8	3
65	Electron transport in quantum dot chains: Dimensionality effects and hopping conductance. Journal of Applied Physics, 2013, 113, 183709.	2.5	20
66	Bismuth surfactant mediated growth of InAs quantum dots by molecular beam epitaxy. Journal of Materials Science: Materials in Electronics, 2013, 24, 1635-1639.	2.2	17
67	Site-controlled formation of InGaAs quantum nanostructures-Tailoring the dimensionality and the quantum confinement. Nano Research, 2013, 6, 235-242.	10.4	14
68	Effect of resonant tunneling on exciton dynamics in coupled dot-well nanostructures. Journal of Applied Physics, 2013, 113, 154304.	2.5	14
69	Strong excitation intensity dependence of the photoluminescence line shape in GaAs1â°'xBix single quantum well samples. Journal of Applied Physics, 2013, 113, 144308.	2.5	16
70	Tuning Quantum Dot Luminescence Below the Bulk Band Gap Using Tensile Strain. ACS Nano, 2013, 7, 5017-5023.	14.6	34
71	Effect of tunneling transfer on thermal redistribution of carriers in hybrid dot-well nanostructures. Journal of Applied Physics, 2013, 113, 034309.	2.5	13
72	In-plane mapping of buried InGaAs quantum rings and hybridization effects on the electronic structure. Journal of Applied Physics, 2012, 112, .	2.5	12

#	Article	IF	Citations
73	Photoconductivity peculiarities in InGaAs quantum wire heterostructures: anisotropy and high photoresponsivity at room temperature. Semiconductor Science and Technology, 2012, 27, 105024.	2.0	11
74	Molecular beam epitaxy growth of GaAsBi/GaAs/AlGaAs separate confinement heterostructures. Applied Physics Letters, 2012, 101, .	3.3	21
75	State filling dependent luminescence in hybrid tunnel coupled dot–well structures. Nanoscale, 2012, 4, 7509.	5.6	8
76	Effect of dimensionality and morphology on polarized photoluminescence in quantum dot-chain structures. Journal of Applied Physics, 2012, 112, .	2.5	10
77	Substrate effects on the strain relaxation in GaN/AlN short-period superlattices. Nanoscale Research Letters, 2012, 7, 289.	5.7	37
78	Strain-free ring-shaped nanostructures by droplet epitaxy for photovoltaic application. Applied Physics Letters, 2012, 101, 043904.	3.3	57
79	Coexistence of type-I and type-II band alignments in antimony-incorporated InAsSb quantum dot nanostructures. Applied Physics Letters, 2012, 100, .	3.3	30
80	Laterally aligned quantum rings: From one-dimensional chains to two-dimensional arrays. Applied Physics Letters, 2012, 100, .	3.3	44
81	InGaAs quantum wire intermediate band solar cell. Applied Physics Letters, 2012, 101, 041106.	3.3	21
82	Influence of Ga coverage on the sizes of GaAs quantum dash pairs grown by high temperature droplet epitaxy. Physica Status Solidi - Rapid Research Letters, 2012, 6, 309-311.	2.4	3
83	Ordered quantum-ring chains grown on a quantum-dot superlattice template. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	10
84	Anisotropic Confinement, Electronic Coupling and Strain Induced Effects Detected by Valence-Band Anisotropy in Self-Assembled Quantum Dots. Nanoscale Research Letters, 2011, 6, 56.	5.7	10
85	Low-Density Quantum Dot Molecules by Selective Etching Using in Droplet as a Mask. IEEE Nanotechnology Magazine, 2011, 10, 600-605.	2.0	6
86	Optical evidence of a quantum well channel in low temperature molecular beam epitaxy grown Ga(AsBi)/GaAs nanostructure. Nanotechnology, 2011, 22, 375703.	2.6	18
87	Excited state coherent resonant electronic tunneling in quantum well-quantum dot hybrid structures. Applied Physics Letters, 2011, 98, 083118.	3.3	11
88	Isotropic Hall effect and "freeze-in―of carriers in the InGaAs self-assembled quantum wires. Journal of Applied Physics, 2011, 110, .	2.5	14
89	In(Ga)As/GaAs(001) quantum dot molecules probed by nanofocus high resolution x-ray diffraction with 100 nm resolution. Applied Physics Letters, 2011, 98, 213105.	3.3	9
90	Confocal Raman depth-scanning spectroscopic study of phononâ' plasmon modes in GaN epilayers. Journal of Applied Physics, 2011, 109, 123528.	2.5	10

#	Article	IF	Citations
91	Insight into optical properties of strain-free quantum dot pairs. Journal of Nanoparticle Research, 2011, 13, 947-952.	1.9	7
92	Confocal Raman depthâ€profile analysis of the electrical and structural properties in Illâ€nitride structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2188-2190.	0.8	5
93	Spectroscopic signature of strain-induced quantum dots created by buried InAs quantum dots in an InGaAs quantum well. Journal of Applied Physics, 2011, 110, .	2.5	1
94	Carrier transfer in the optical recombination of quantum dots. Physical Review B, 2011, 83, .	3.2	6
95	Band Alignment Tailoring of InAs _{1â^'<i>x</i>} Sb _{<i>x</i>} /GaAs Quantum Dots: Control of Type I to Type II Transition. Nano Letters, 2010, 10, 3052-3056.	9.1	31
96	Cooperative Effects in the Photoluminescence of (In,Ga)As/GaAs Quantum Dot Chain Structures. Nanoscale Research Letters, 2010, 5, 991-1001.	5.7	8
97	Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells. Journal of Applied Physics, 2010, 108, .	2.5	39
98	Aharonov-Bohm Interference in Neutral Excitons: Effects of Built-In Electric Fields. Physical Review Letters, 2010, 104, 086401.	7.8	80
99	Interface roughness scattering in laterally coupled InGaAs quantum wires. Applied Physics Letters, 2010, 97, 262103.	3.3	14
100	Evolution of Various Nanostructures and Preservation of Self-Assembled InAs Quantum Dots During GaAs Capping. IEEE Nanotechnology Magazine, 2010, 9, 149-156.	2.0	11
101	Tunneling-barrier controlled excitation transfer in hybrid quantum dot-quantum well nanostructures. Journal of Applied Physics, 2010, 108, 074316.	2.5	22
102	Measurement of coherent tunneling between InGaAs quantum wells and InAs quantum dots using photoluminescence spectroscopy. Physical Review B, 2010, 82, .	3.2	26
103	Lateral alignment of InGaAs quantum dots as function of spacer thickness. Applied Physics Letters, 2009, 94, 083107.	3.3	9
104	Comprehensive doping and temperature studies of spin relaxation in InSb. Applied Physics Letters, 2009, 95, .	3.3	3
105	On the complex behavior of strain relaxation in (In,Ga)As/GaAs(001) quantum dot molecules. Applied Physics Letters, 2009, 95, 023103.	3.3	1
106	Peculiar three-dimensional ordering in (In,Ga)As/GaAs(311)B quantum dot superlattices. Applied Physics Letters, 2009, 94, .	3.3	4
107	One-dimensional features of In(Ga)As/GaAs dot chain structures with changeable interdot coupling. New Journal of Physics, 2009, 11, 043022.	2.9	13
108	Hybridized quantum dot-wetting layer states in photoluminescence of In(Ga)As/GaAs dot chain samples. Journal of Applied Physics, 2009, 105, .	2.5	5

#	Article	IF	CITATIONS
109	Coherent exciton–surface plasmon polariton interactions in hybrid metal semiconductor nanostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 466-469.	0.8	2
110	Mechanisms of interdot coupling in (In,Ga)As/GaAs quantum dot arrays. Applied Physics Letters, 2009, 94, .	3.3	21
111	Spectroscopy of shallow InAs/InP quantum wire nanostructures. Nanotechnology, 2009, 20, 065401.	2.6	10
112	Low thermal drift in highly sensitive doped channel Al0.3Ga0.7As/GaAs/In0.2Ga0.8As micro-Hall element. Journal of Materials Science: Materials in Electronics, 2008, 19, 776-782.	2.2	5
113	Investigation of deep levels in InGaAs channels comprising thin layers of InAs. Journal of Materials Science: Materials in Electronics, 2008, 19, 797-800.	2.2	3
114	Unusual role of the substrate in dropletâ€induced GaAs/AlGaAs quantumâ€dot pairs. Physica Status Solidi - Rapid Research Letters, 2008, 2, 281-283.	2.4	8
115	Strained Quantum Well InAs Micro-Hall Sensors: Dependence of Device Performance on Channel Thickness. IEEE Transactions on Electron Devices, 2008, 55, 695-700.	3.0	4
116	Polarized Raman spectroscopy and X-ray diffuse scattering in InGaAs/GaAs(100) quantum-dot chains. Journal of Materials Science: Materials in Electronics, 2008, 19, 692-698.	2.2	4
117	Deep traps in GaAs/InGaAs quantum wells and quantum dots, studied by noise spectroscopy. Journal of Applied Physics, 2008, 104, 103709.	2.5	16
118	Thermal peculiarity of AlAs-capped InAs quantum dots in a GaAs matrix. Journal of Applied Physics, 2008, 104, .	2.5	8
119	Spectroscopic observation of developing InAs quantum dots on GaAs ringlike-nanostructured templates. Journal of Applied Physics, 2008, 104, 044310.	2.5	5
120	Excitonic band edges and optical anisotropy of InAsâ [*] InP quantum dot structures. Journal of Applied Physics, 2008, 103, 054315.	2. 5	10
121	Near-field optical spectroscopy of GaAsâ • Aly Ga1â · y Asquantum dot pairs grown by high-temperature droplet epitaxy. Physical Review B, 2008, 77, .	3.2	17
122	Photoluminescence comparison analysis of patterned and self-assembled quantum dots by MOCVD. , 2008, , .		0
123	Development of continuum states in photoluminescence of self-assembled InGaAsâ^•GaAs quantum dots. Journal of Applied Physics, 2007, 101, 014301.	2.5	34
124	Spectroscopy of sub-wetting layer states in InAs/GaAs quantum dot bi-layer systems. Semiconductor Science and Technology, 2007, 22, 86-96.	2.0	11
125	Coherent exciton - surface plasmon polariton interactions in hybrid metal semiconductor nanostructures. , 2007, , .		1
126	Optical behavior of GaAsâ^•AlGaAs ringlike nanostructures. Journal of Applied Physics, 2007, 101, 024311.	2.5	13

#	Article	IF	Citations
127	Formation of Self-Assembled Sidewall Nanowires on Shallow Patterned GaAs (100). IEEE Nanotechnology Magazine, 2007, 6, 70-74.	2.0	7
128	Shape transformation during overgrowth of InGaAsâ-GaAs(001) quantum rings. Applied Physics Letters, 2007, 91, .	3.3	23
129	Structural anisotropy of InGaAs/GaAs(001) quantum dot chains structures. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2567-2571.	1.8	3
130	Lateral ordering of quantum dots and wires in the (In,Ga)As/GaAs(100) multilayer structures. Semiconductors, 2007, 41, 73-80.	0.5	5
131	Influence of GaAs Substrate Orientation on InAs Quantum Dots: Surface Morphology, Critical Thickness, and Optical Properties. Nanoscale Research Letters, 2007, 2, .	5.7	21
132	Low density InAs quantum dots grown on GaAs nanoholes. Applied Physics Letters, 2006, 89, 043113.	3.3	68
133	Lengthening of the photoluminescence decay time of InAs quantum dots coupled to InGaAsâ^•GaAs quantum well. Journal of Applied Physics, 2006, 100, 054313.	2.5	17
134	Excitonic transfer in coupled InGaAsâ^•GaAs quantum well to InAs quantum dots. Applied Physics Letters, 2006, 89, 151914.	3.3	24
135	Growth and characterization of bilayer InAs/GaAs quantum dot structures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2403-2410.	1.8	5
136	Optical detection of asymmetric quantum-dot molecules in double-layer InAs/GaAs structures. Semiconductors, 2006, 40, 79-83.	0.5	37
137	Annealing effect on GaAs droplet templates in formation of self-assembled InAs quantum dots. Applied Physics Letters, 2006, 89, 213103.	3.3	9
138	InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Applied Physics Letters, 2006, 89, 202101.	3.3	128
139	Localized formation of InAs quantum dots on shallow-patterned GaAs(100). Applied Physics Letters, 2006, 88, 233102.	3.3	40
140	Zero-strain GaAs quantum dot molecules as investigated by x-ray diffuse scattering. Applied Physics Letters, 2006, 89, 053116.	3.3	23
141	Time-resolved photoluminescence spectroscopy of subwetting layer states in InGaAs∕GaAs quantum dot structures. Journal of Applied Physics, 2006, 100, 054316.	2.5	14
142	Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots. Applied Physics Letters, 2006, 89, 243124.	3.3	20
143	Resonant Raman Scattering and Atomic Force Microscopy of InGaAsâ^•GaAs Multilayer Nanostructures with Quantum Dots. Semiconductors, 2005, 39, 127.	0.5	3
144	Control on self-organization of InGaAs/GaAs(100) quantum-dot chains. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 1732.	1.6	9

Yuriy l Mazur

#	ARTICLE	IF	CITATION
145	Doped-channel micro-Hall devices: Size and geometry effects. Journal of Applied Physics, 2005, 98, 094503.	2.5	7
146	Interdot carrier transfer in asymmetric bilayer InAsâ^•GaAs quantum dot structures. Applied Physics Letters, 2005, 86, 063102.	3. 3	60
147	Fabrication of (In,Ga)As quantum-dot chains on GaAs(100). Applied Physics Letters, 2004, 84, 1931-1933.	3.3	114
148	Transient luminescence of dense InAs/GaAs quantum dot arrays. Physical Review B, 2003, 67, .	3.2	50
149	Staircase-like spectral dependence of ground-state luminescence time constants in high-density InAs/GaAs quantum dots. Applied Physics Letters, 2001, 78, 3214-3216.	3.3	41
150	Carrier transfer in self-assembled coupled InAs/GaAs quantum dots. Journal of Applied Physics, 2000, 88, 7162-7170.	2.5	53