List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2818300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS Journal, 2022, 289, 6969-6993.	4.7	5
2	<i>Atossa</i> : a royal link between OXPHOS metabolism and macrophage migration. EMBO Journal, 2022, , e111290.	7.8	1
3	Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
4	Mechanisms of mitochondrial respiratory adaptation. Nature Reviews Molecular Cell Biology, 2022, 23, 817-835.	37.0	61
5	GCN5 acetyltransferase in cellular energetic and metabolic processes. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194626.	1.9	42
6	Tetracyclines promote survival and fitness in mitochondrial disease models. Nature Metabolism, 2021, 3, 33-42.	11.9	37
7	Structure–Activity Relationship and Biological Investigation of SR18292 (16), a Suppressor of Glucagon-Induced Glucose Production. Journal of Medicinal Chemistry, 2021, 64, 980-990.	6.4	2
8	Peroxisomal-derived ether phospholipids link nucleotides to respirasome assembly. Nature Chemical Biology, 2021, 17, 703-710.	8.0	28
9	A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metabolism, 2021, 33, 598-614.e7.	16.2	52
10	Controversies surrounding peripheral cannabinoid receptor 1 in fatty liver disease. Journal of Clinical Investigation, 2021, 131, .	8.2	1
11	Autophagy mediates hepatic GRK2 degradation to facilitate glucagonâ€induced metabolic adaptation to fasting. FASEB Journal, 2020, 34, 399-409.	0.5	7
12	Transcriptome-wide analysis of PGC-1α–binding RNAs identifies genes linked to glucagon metabolic action. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22204-22213.	7.1	20
13	Defective NADPH production in mitochondrial disease complex I causes inflammation and cell death. Nature Communications, 2020, 11, 2714.	12.8	69
14	Obesity/Type 2 Diabetes-Associated Liver Tumors Are Sensitive to Cyclin D1 Deficiency. Cancer Research, 2020, 80, 3215-3221.	0.9	12
15	H3K27me3-mediated PGC1α gene silencing promotes melanoma invasion through WNT5A and YAP. Journal of Clinical Investigation, 2020, 130, 853-862.	8.2	32
16	Regulation of Hepatic Metabolism, Recent Advances, and Future Perspectives. Current Diabetes Reports, 2019, 19, 98.	4.2	7
17	ER and Nutrient Stress Promote Assembly of Respiratory Chain Supercomplexes through the PERK-elF2α Axis. Molecular Cell, 2019, 74, 877-890.e6.	9.7	214
18	Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences, 2018, 1411, 21-35.	3.8	334

#	Article	IF	CITATIONS
19	Inhibition of the ER stress IRE1α inflammatory pathway protects against cell death in mitochondrial complex I mutant cells. Cell Death and Disease, 2018, 9, 658.	6.3	24
20	Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting. Cell Metabolism, 2017, 25, 428-437.	16.2	37
21	Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature, 2017, 543, 252-256.	27.8	520
22	ERRα Maintains Mitochondrial Oxidative Metabolism and Constitutes an Actionable Target in PGC1α-Elevated Melanomas. Molecular Cancer Research, 2017, 15, 1366-1375.	3.4	23
23	Selective Chemical Inhibition of PGC-1α Gluconeogenic Activity Ameliorates Type 2 Diabetes. Cell, 2017, 169, 148-160.e15.	28.9	153
24	Breaking BRAF(V600E)–drug resistance by stressing mitochondria. Pigment Cell and Melanoma Research, 2016, 29, 401-403.	3.3	5
25	PGC-1 Coactivators: Shepherding the Mitochondrial Biogenesis of Tumors. Trends in Cancer, 2016, 2, 619-631.	7.4	84
26	Oxidative Dimerization of PHD2 is Responsible for its Inactivation and Contributes to Metabolic Reprogramming via HIF-11± Activation. Scientific Reports, 2016, 6, 18928.	3.3	113
27	The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator. Journal of Biological Chemistry, 2016, 291, 10635-10645.	3.4	31
28	Dietary fat promotes intestinal dysregulation. Nature, 2016, 531, 42-43.	27.8	8
29	Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nature Reviews Drug Discovery, 2016, 15, 786-804.	46.4	254
30	A PGC1α-mediated transcriptional axis suppresses melanoma metastasis. Nature, 2016, 537, 422-426.	27.8	161
31	Bromodomain Inhibitors Correct Bioenergetic Deficiency Caused by Mitochondrial Disease Complex I Mutations. Molecular Cell, 2016, 64, 163-175.	9.7	50
32	Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity. Molecular and Cellular Biology, 2016, 36, 184-196.	2.3	41
33	Interrupting synoviolin play at the <scp>ER</scp> : a plausible action to elevate mitochondrial energetics and silence obesity. EMBO Journal, 2015, 34, 981-983.	7.8	0
34	Adenosine activates thermogenic adipocytes. Cell Research, 2015, 25, 155-156.	12.0	5
35	Molecular pathophysiology of hepatic glucose production. Molecular Aspects of Medicine, 2015, 46, 21-33.	6.4	212
36	Cancer Cells Hijack Gluconeogenic Enzymes to Fuel Cell Growth. Molecular Cell, 2015, 60, 509-511.	9.7	34

#	Article	IF	CITATIONS
37	USP7 Attenuates Hepatic Gluconeogenesis Through Modulation of FoxO1 Gene Promoter Occupancy. Molecular Endocrinology, 2014, 28, 912-924.	3.7	30
38	Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity. Nature, 2014, 508, 258-262.	27.8	387
39	Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature, 2014, 510, 547-551.	27.8	198
40	Cdc2-Like Kinase 2 Suppresses Hepatic Fatty Acid Oxidation and Ketogenesis Through Disruption of the PGC-1α and MED1 Complex. Diabetes, 2014, 63, 1519-1532.	0.6	31
41	Targeting Mitochondrial Oxidative Metabolism in Melanoma Causes Metabolic Compensation through Glucose and Glutamine Utilization. Cancer Research, 2014, 74, 3535-3545.	0.9	74
42	PGC1α Expression Defines a Subset of Human Melanoma Tumors with Increased Mitochondrial Capacity and Resistance to Oxidative Stress. Cancer Cell, 2013, 23, 287-301.	16.8	600
43	Oleic Acid Stimulates Complete Oxidation of Fatty Acids through Protein Kinase A-dependent Activation of SIRT1-PGC1α Complex. Journal of Biological Chemistry, 2013, 288, 7117-7126.	3.4	159
44	The sirtuin family's role in aging and age-associated pathologies. Journal of Clinical Investigation, 2013, 123, 973-979.	8.2	195
45	Defective Mitochondrial Morphology and Bioenergetic Function in Mice Lacking the Transcription Factor Yin Yang 1 in Skeletal Muscle. Molecular and Cellular Biology, 2012, 32, 3333-3346.	2.3	77
46	The Deacetylase Sirt6 Activates the Acetyltransferase GCN5 and Suppresses Hepatic Gluconeogenesis. Molecular Cell, 2012, 48, 900-913.	9.7	246
47	TRPV4 Is a Regulator of Adipose Oxidative Metabolism, Inflammation, and Energy Homeostasis. Cell, 2012, 151, 96-110.	28.9	292
48	Yin Yang 1 Deficiency in Skeletal Muscle Protects against Rapamycin-Induced Diabetic-like Symptoms through Activation of Insulin/IGF Signaling. Cell Metabolism, 2012, 15, 505-517.	16.2	99
49	A metabolic prosurvival role for PML in breast cancer. Journal of Clinical Investigation, 2012, 122, 3088-3100.	8.2	220
50	Clk2 and B56β Mediate Insulin-Regulated Assembly of the PP2A Phosphatase Holoenzyme Complex on Akt. Molecular Cell, 2011, 41, 471-479.	9.7	80
51	The cAMP/PKA Pathway Rapidly Activates SIRT1 to Promote Fatty Acid Oxidation Independently of Changes in NAD+. Molecular Cell, 2011, 44, 851-863.	9.7	288
52	Myopathy caused by mammalian target of rapamycin complex 1 (mTORC1) inactivation is not reversed by restoring mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20808-20813.	7.1	38
53	PGC1α Promotes Tumor Growth by Inducing Gene Expression Programs Supporting Lipogenesis. Cancer Research, 2011, 71, 6888-6898.	0.9	160
54	A Hypoxia-Induced Positive Feedback Loop Promotes Hypoxia-Inducible Factor 1α Stability through miR-210 Suppression of Glycerol-3-Phosphate Dehydrogenase 1-Like. Molecular and Cellular Biology, 2011, 31, 2696-2706.	2.3	195

#	Article	IF	CITATIONS
55	Nutrient-dependent regulation of PGC-1α's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1676-1683.	2.3	165
56	Conserved role of SIRT1 orthologs in fasting-dependent inhibition of the lipid/cholesterol regulator SREBP. Genes and Development, 2010, 24, 1403-1417.	5.9	303
57	Cdc2-like Kinase 2 Is an Insulin-Regulated Suppressor of Hepatic Gluconeogenesis. Cell Metabolism, 2010, 11, 23-34.	16.2	110
58	A PGC-1α-O-GlcNAc Transferase Complex Regulates FoxO Transcription Factor Activity in Response to Glucose. Journal of Biological Chemistry, 2009, 284, 5148-5157.	3.4	168
59	GCN5-mediated Transcriptional Control of the Metabolic Coactivator PGC-1β through Lysine Acetylation. Journal of Biological Chemistry, 2009, 284, 19945-19952.	3.4	115
60	AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 2009, 458, 1056-1060.	27.8	2,654
61	Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature, 2009, 461, 109-113.	27.8	882
62	Foxo1 integrates insulin signaling with mitochondrial function in the liver. Nature Medicine, 2009, 15, 1307-1311.	30.7	273
63	Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. Biochemical and Biophysical Research Communications, 2009, 378, 836-841.	2.1	150
64	Metabolic adaptations through the PGCâ \in lÎ \pm and SIRT1 pathways. FEBS Letters, 2008, 582, 46-53.	2.8	532
65	O-GlcNAc Regulates FoxO Activation in Response to Glucose. Journal of Biological Chemistry, 2008, 283, 16283-16292.	3.4	265
66	The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-11±. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17187-17192.	7.1	180
67	A PGCâ€1α:Oâ€GlcNAc Transferase Complex Regulates Foxo1a Activation in Response to Glucose. FASEB Journal, 2008, 22, 613.1.	0.5	Ο
68	Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12861-12866.	7.1	485
69	Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO Journal, 2007, 26, 1913-1923.	7.8	1,107
70	SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO Journal, 2007, 26, 3169-3179.	7.8	982
71	mTOR controls mitochondrial oxidative function through a YY1–PGC-1α transcriptional complex. Nature, 2007, 450, 736-740.	27.8	1,239
72	Neuronal SIRT1 Activation as a Novel Mechanism Underlying the Prevention of Alzheimer Disease Amyloid Neuropathology by Calorie Restriction*. Journal of Biological Chemistry, 2006, 281, 21745-21754.	3.4	567

#	Article	IF	CITATIONS
73	GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1α. Cell Metabolism, 2006, 3, 429-438.	16.2	383
74	Resveratrol Improves Mitochondrial Function and Protects against Metabolic Disease by Activating SIRT1 and PGC-11±. Cell, 2006, 127, 1109-1122.	28.9	3,603
75	Foxa2, a novel transcriptional regulator of insulin sensitivity. Nature Medicine, 2006, 12, 38-39.	30.7	53
76	Resveratrol improves health and survival of mice on a high-calorie diet. Nature, 2006, 444, 337-342.	27.8	3,882
77	Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: Role of PGC-1A. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 15410-15415.	7.1	63
78	Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature, 2005, 434, 113-118.	27.8	2,825
79	Err and Gabpa/b specify PGC-1Â-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 6570-6575.	7.1	627
80	p38 Mitogen-Activated Protein Kinase Is the Central Regulator of Cyclic AMP-Dependent Transcription of the Brown Fat Uncoupling Protein 1 Gene. Molecular and Cellular Biology, 2004, 24, 3057-3067.	2.3	473
81	Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1Â: modulation by p38 MAPK. Genes and Development, 2004, 18, 278-289.	5.9	263
82	Characterization of the peroxisome proliferator activated receptor coactivator 1 alpha (PGC 1α) expression in the murine brain. Brain Research, 2003, 961, 255-260.	2.2	45
83	Insulin-regulated hepatic gluconeogenesis through FOXO1–PGC-1α interaction. Nature, 2003, 423, 550-555.	27.8	1,312
84	PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genetics, 2003, 34, 267-273.	21.4	8,185
85	Suppression of Î ² Cell Energy Metabolism and Insulin Release by PGC-1α. Developmental Cell, 2003, 5, 73-83.	7.0	134
86	PGC-1β in the Regulation of Hepatic Glucose and Energy Metabolism. Journal of Biological Chemistry, 2003, 278, 30843-30848.	3.4	212
87	Peroxisome Proliferator-Activated Receptor-γ Coactivator 1α (PGC-1α): Transcriptional Coactivator and Metabolic Regulator. Endocrine Reviews, 2003, 24, 78-90.	20.1	1,809
88	Regulation of hepatic fasting response by PPARÂ coactivator-1Â (PGC-1): Requirement for hepatocyte nuclear factor 4Â in gluconeogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4012-4017.	7.1	522
89	Peroxisome Proliferator-activated Receptor γ Coactivator 1β (PGC-1β), A Novel PGC-1-related Transcription Coactivator Associated with Host Cell Factor. Journal of Biological Chemistry, 2002, 277, 1645-1648. 	3.4	463
90	Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature, 2002, 418, 797-801.	27.8	2,232

#	Article	IF	CITATIONS
91	Cytokine Stimulation of Energy Expenditure through p38 MAP Kinase Activation of PPARÎ ³ Coactivator-1. Molecular Cell, 2001, 8, 971-982.	9.7	661
92	Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature, 2001, 413, 131-138.	27.8	1,640
93	CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature, 2001, 413, 179-183.	27.8	1,238
94	Modulation of Estrogen Receptor- \hat{l} + Transcriptional Activity by the Coactivator PGC-1. Journal of Biological Chemistry, 2000, 275, 16302-16308.	3.4	193
95	Direct Coupling of Transcription and mRNA Processing through the Thermogenic Coactivator PGC-1. Molecular Cell, 2000, 6, 307-316.	9.7	354
96	Transcriptional activation of adipogenesis. Current Opinion in Cell Biology, 1999, 11, 689-694.	5.4	127
97	Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell, 1999, 98, 115-124.	28.9	3,545
98	2-Methoxyestradiol, an endogenous metabolite of 17beta-estradiol, inhibits adipocyte proliferation. Molecular and Cellular Biochemistry, 1998, 189, 1-7.	3.1	20
99	Involvement of the retinoblastoma protein in brown and white adipocyte cell differentiation: Functional and physical association with the adipogenic transcription factor C/EBPα. European Journal of Cell Biology, 1998, 77, 117-123.	3.6	44
100	A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis. Cell, 1998, 92, 829-839.	28.9	3,376
101	Retinoic acid modulates retinoid X receptor α and retinoic acid receptor α levels of cultured brown adipocytes. FEBS Letters, 1997, 406, 196-200.	2.8	33