
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2817903/publications.pdf Version: 2024-02-01

MINC-LED TANC

#	Article	IF	CITATIONS
1	Ha-RasV12-Induced Multilayer Cellular Aggregates Is Mediated by Rac1 Activation Rather Than YAP Activation. Biomedicines, 2022, 10, 977.	3.2	1
2	Adipose tissue stiffness in the development of metabolic diseases. FASEB Journal, 2022, 36, .	0.5	3
3	PPARÎ ³ activation improves the microenvironment of perivascular adipose tissue and attenuates aortic stiffening in obesity. Journal of Biomedical Science, 2021, 28, 22.	7.0	13
4	A de novo COL17A1 splice-site mutation causing a 7-bp deletion in a Taiwanese patient with junctional epidermolysis bullosa. European Journal of Dermatology, 2021, 31, 267-269.	0.6	0
5	Symmetry breaking of tissue mechanics in wound induced hair follicle regeneration of laboratory and spiny mice. Nature Communications, 2021, 12, 2595.	12.8	40
6	VEGF-Induced Endothelial Podosomes via ROCK2-Dependent Thrombomodulin Expression Initiate Sprouting Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1657-1671.	2.4	7
7	Inflammationâ€induced macrophage lysyl oxidase in adipose stiffening and dysfunction in obesity. Clinical and Translational Medicine, 2021, 11, e543.	4.0	11
8	The Pathophysiologic Role of Gelsolin in Chronic Kidney Disease: Focus on Podocytes. International Journal of Molecular Sciences, 2021, 22, 13281.	4.1	2
9	Androgenetic alopecia is associated with increased scalp hardness. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e234-e236.	2.4	4
10	Dichotomy of the function of DDR1 in cells and disease progression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 118473.	4.1	33
11	The tension biology of wound healing. Experimental Dermatology, 2019, 28, 464-471.	2.9	116
12	Bcl-2 regulates store-operated Ca2+ entry to modulate ER stress-induced apoptosis. Cell Death Discovery, 2018, 4, 37.	4.7	35
13	Caveolinâ€1 downâ€regulation is required for Wnt5aâ€Frizzled 2 signalling in Haâ€Ras ^{V12} â€induce cell transformation. Journal of Cellular and Molecular Medicine, 2018, 22, 2631-2643.	ed _{3.6}	5
14	Mechanical forces in skin disorders. Journal of Dermatological Science, 2018, 90, 232-240.	1.9	78
15	Caveolin-1 Controls Hyperresponsiveness to Mechanical Stimuli and Fibrogenesis-Associated RUNX2 ActivationÂin Keloid Fibroblasts. Journal of Investigative Dermatology, 2018, 138, 208-218.	0.7	74
16	Coincidence Detection of Membrane Stretch and Extracellular pH by the Proton-Sensing Receptor OGR1 (GPR68). Current Biology, 2018, 28, 3815-3823.e4.	3.9	52
17	Time Series Integrative Analysis of RNA SequencingÂand MicroRNA Expression Data RevealsÂKey Biologic Wound Healing PathwaysÂinÂKeloid-Prone Individuals. Journal of Investigative Dermatology, 2018, 138, 2690-2693.	0.7	41
18	Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and β1 integrin. Scientific Reports, 2017, 7, 15008.	3.3	119

#	Article	IF	CITATIONS
19	Vibrio vulnificus MARTX cytotoxin causes inactivation of phagocytosis-related signaling molecules in macrophages. Journal of Biomedical Science, 2017, 24, 58.	7.0	18
20	Role of Excessive Autophagy Induced by Mechanical Overload in Vein Graft Neointima Formation: Prediction and Prevention. Scientific Reports, 2016, 6, 22147.	3.3	12
21	DDR1 promotes E-cadherin stability via inhibition of integrin-β1-Src activation-mediated E-cadherin endocytosis. Scientific Reports, 2016, 6, 36336.	3.3	19
22	Spatial distribution of filament elasticity determines the migratory behaviors of a cell. Cell Adhesion and Migration, 2016, 10, 368-377.	2.7	6
23	Functions of DDR1 in Epithelial Cell Differentiation. , 2016, , 239-258.		0
24	Mechanical coupling of cytoskeletal elasticity and force generation is crucial for understanding the migrating nature of keloid fibroblasts. Experimental Dermatology, 2015, 24, 579-584.	2.9	32
25	Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget, 2015, 6, 15966-15983.	1.8	395
26	Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing. Oncotarget, 2015, 6, 20946-20958.	1.8	140
27	Albumin stimulates renal tubular inflammation through a HSP70-TLR4 axis in early diabetic nephropathy. DMM Disease Models and Mechanisms, 2015, 8, 1311-21.	2.4	66
28	Mechanosensitive storeâ€operated calcium entry regulates the formation of cell polarity. Journal of Cellular Physiology, 2015, 230, 2086-2097.	4.1	34
29	Matrix-Stiffness–Regulated Inverse Expression of Krüppel-Like Factor 5 and Krüppel-Like Factor 4 in the Pathogenesis of Renal Fibrosis. American Journal of Pathology, 2015, 185, 2468-2481.	3.8	40
30	Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components. American Journal of Physiology - Renal Physiology, 2014, 307, F695-F707.	2.7	50
31	GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment. Journal of Cell Science, 2014, 127, 4186-200.	2.0	29
32	Caveolin-1 Alters the Pattern of Cytoplasmic Ca2+ Oscillations and Ca2+-dependent Gene Expression by Enhancing Leukotriene Receptor Desensitization. Journal of Biological Chemistry, 2014, 289, 17843-17853.	3.4	13
33	A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomaterials Science, 2014, 2, 567.	5.4	45
34	Enhancement of Renal Epithelial Cell Functions through Microfluidic-Based Coculture with Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2013, 19, 2024-2034.	3.1	42
35	Migration speed and directionality switch of normal epithelial cells after TGF-β1-induced EMT (tEMT) on micro-structured polydimethylsiloxane (PDMS) substrates with variations in stiffness and topographic patterning. Cell Communication and Adhesion, 2013, 20, 115-126.	1.0	19
36	The Influence of Physical and Physiological Cues on Atomic Force Microscopy-Based Cell Stiffness Assessment. PLoS ONE, 2013, 8, e77384.	2.5	58

#	Article	IF	CITATIONS
37	A tale of two collagen receptors, integrin β ₁ and discoidin domain receptor 1, in epithelial cell differentiation. American Journal of Physiology - Cell Physiology, 2012, 303, C1207-C1217.	4.6	64
38	Adhesion strengths of normal epithelial cells and epithelial mesenchymal transition cells by using single-cell force spectroscopy. , 2011, , .		0
39	DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Molecular Biology of the Cell, 2011, 22, 940-953.	2.1	73
40	DDR1 regulates the stabilization of cell surface Eâ€cadherin and Eâ€cadherinâ€mediated cell aggregation. Journal of Cellular Physiology, 2010, 224, 387-397.	4.1	50
41	Mouse Kidney Progenitor Cells Accelerate Renal Regeneration and Prolong Survival after Ischemic Injury. Stem Cells, 2010, 28, 573-584.	3.2	56
42	Transforming Growth Factor-β1 Induces Smad3-Dependent β1 Integrin Gene Expression in Epithelial-to-Mesenchymal Transition during Chronic Tubulointerstitial Fibrosis. American Journal of Pathology, 2010, 177, 1743-1754.	3.8	113
43	Involvement of focal adhesion kinase in cell adhesion force on different substrate rigidity. , 2009, , .		0
44	DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. American Journal of Physiology - Cell Physiology, 2009, 297, C419-C429.	4.6	50
45	Discoidin domain receptor 1 activation suppresses α ₂ β ₁ integrinâ€dependent cell spreading through inhibition of Cdc42 activity. Journal of Cellular Physiology, 2009, 218, 146-156.	4.1	55
46	Cell confluency-induced Stat3 activation regulates NHE3 expression by recruiting Sp1 and Sp3 to the proximal <i>NHE3</i> promoter region during epithelial dome formation. American Journal of Physiology - Cell Physiology, 2009, 296, C13-C24.	4.6	26
47	Low substratum rigidity of collagen gel promotes ERK phosphorylation via lipid raft to augment cell migration. Journal of Cellular Biochemistry, 2008, 103, 1111-1124.	2.6	8
48	Soft Substrate Up-regulates the Interaction of STIM1 with Store-operated Ca ²⁺ Channels That Lead to Normal Epithelial Cell Apoptosis. Molecular Biology of the Cell, 2008, 19, 2220-2230.	2.1	35
49	Mechanosensing machinery for cells under low substratum rigidity. American Journal of Physiology - Cell Physiology, 2008, 295, C1579-C1589.	4.6	68
50	Cell Confluence-induced Activation of Signal Transducer and Activator of Transcription-3 (Stat3) Triggers Epithelial Dome Formation via Augmentation of Sodium Hydrogen Exchanger-3 (NHE3) Expression. Journal of Biological Chemistry, 2007, 282, 9883-9894.	3.4	37
51	Deregulation of AP-1 Proteins in Collagen Gel-induced Epithelial Cell Apoptosis Mediated by Low Substratum Rigidity. Journal of Biological Chemistry, 2007, 282, 752-763.	3.4	28
52	Activation of caspase-8 and Erk-1/2 in domes regulates cell death induced by confluence in MDCK cells. Journal of Cellular Physiology, 2007, 211, 174-182.	4.1	8
53	Soft substrate induces apoptosis by the disturbance of Ca2+ homeostasis in renal epithelial LLC-PK1 cells. Journal of Cellular Physiology, 2007, 212, 401-410.	4.1	12
54	Rapamycin attenuates unilateral ureteral obstruction-induced renal fibrosis. Kidney International, 2006, 69, 2029-2036.	5.2	148

#	Article	IF	CITATIONS
55	A Discoidin Domain Receptor 1/SHP-2 Signaling Complex Inhibits α2β1-Integrin–mediated Signal Transducers and Activators of Transcription 1/3 Activation and Cell Migration. Molecular Biology of the Cell, 2006, 17, 2839-2852.	2.1	94
56	Function of discoidin domain receptor I in HGF-induced branching tubulogenesis of MDCK cells in collagen gel. Journal of Cellular Physiology, 2005, 203, 295-304.	4.1	53
57	Mechanical properties of collagen gels derived from rats of different ages. Journal of Biomaterials Science, Polymer Edition, 2005, 16, 1261-1275.	3.5	53
58	Rigidity of Collagen Fibrils Controls Collagen Gel-induced Down-regulation of Focal Adhesion Complex Proteins Mediated by α2β1 Integrin. Journal of Biological Chemistry, 2003, 278, 21886-21892.	3.4	64
59	Hepatocyte growth factor upregulates α2β1 integrin in Madin-Darby canine kidney cells: Implications in tubulogenesis. Journal of Biomedical Science, 2002, 9, 261-272.	7.0	17
60	Collagen gel overlay induces two phases of apoptosis in MDCK cells. American Journal of Physiology - Cell Physiology, 2001, 280, C1440-C1448.	4.6	16
61	Role of α3β1 integrin in tubulogenesis of Madin-Darby canine kidney cells. Kidney International, 2001, 59, 1770-1778.	5.2	22
62	Role of fibronectin deposition in branching morphogenesis of Madin-Darby canine kidney cells. Kidney International, 2000, 57, 1860-1867.	5.2	36
63	Age effect of type I collagen on morphogenesis of Mardin-Darby canine kidney cells. Kidney International, 2000, 57, 1539-1548.	5.2	27
64	Bcl-2 overexpression prevents apoptosis-induced Madin-Darby canine kidney simple epithelial cyst formation. Kidney International, 1999, 55, 168-178.	5.2	79
65	Role of fibronectin deposition in cystogenesis of Madin-Darby canine kidney cells. Kidney International, 1999, 56, 92-103.	5.2	23
66	TRANSIENT APOPTOSIS ELICITED BY INSULIN IN SERUM-STARVED GLIOMA CELLS INVOLVES Fas/Fas-L AND Bcl-2. Cell Biology International, 1999, 23, 533-540.	3.0	10
67	Collagen gel overlay induces apoptosis of polarized cells in cultures: disoriented cell death. American Journal of Physiology - Cell Physiology, 1998, 275, C921-C931.	4.6	35
68	Intracellular alkalinization in dexamethasone-induced thymocyte apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 1997, 2, 304-312.	4.9	7
69	Role of Apoptosis in Growth and Differentiation of Proximal Tubule Cells in Primary Cultures. Biochemical and Biophysical Research Communications, 1996, 218, 658-664.	2.1	19
70	Characterization of phospholipase A2 activation by plasmin in cultured bovine endothelial cells. Journal of Biomedical Science, 1996, 3, 59-66.	7.0	1