
Tuck Wah Soong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2814358/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Structure and functional expression of a member of the low voltage-activated calcium channel family. Science, 1993, 260, 1133-1136.	12.6	558
4	Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature, 2001, 411, 484-489.	27.8	371
5	Mutations in Potassium Channel Kir2.6 Cause Susceptibility to Thyrotoxic Hypokalemic Periodic Paralysis. Cell, 2010, 140, 88-98.	28.9	245
6	Determinants of PKC-dependent modulation of a family of neuronal calcium channels. Neuron, 1995, 15, 929-940.	8.1	225
7	Structure and Inhibition of the SARS Coronavirus Envelope Protein Ion Channel. PLoS Pathogens, 2009, 5, e1000511.	4.7	216
8	Transcript Scanning Reveals Novel and Extensive Splice Variations in Human L-type Voltage-gated Calcium Channel, Cav1.2 α1 Subunit. Journal of Biological Chemistry, 2004, 279, 44335-44343.	3.4	145
9	Systematic Identification of Splice Variants in Human P/Q-Type Channel α ₁ 2.1 Subunits: Implications for Current Density and Ca ²⁺ -Dependent Inactivation. Journal of Neuroscience, 2002, 22, 10142-10152.	3.6	131
10	RNA Editing of the IQ Domain in Cav1.3 Channels Modulates Their Ca2+-Dependent Inactivation. Neuron, 2012, 73, 304-316.	8.1	123
11	Splicing for alternative structures of Ca1.2 Ca channels in cardiac and smooth muscles. Cardiovascular Research, 2005, 68, 197-203.	3.8	107
12	The Small Hydrophobic Protein of the Human Respiratory Syncytial Virus Forms Pentameric Ion Channels. Journal of Biological Chemistry, 2012, 287, 24671-24689.	3.4	106
13	A Smooth Muscle Cav1.2 Calcium Channel Splice Variant Underlies Hyperpolarized Window Current and Enhanced State-dependent Inhibition by Nifedipine. Journal of Biological Chemistry, 2007, 282, 35133-35142.	3.4	101
14	CaV1.2 channelopathies: from arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflugers Archiv European Journal of Physiology, 2010, 460, 353-359.	2.8	91
15	Alternative Splicing as a Molecular Switch for Ca2+/Calmodulin-Dependent Facilitation of P/Q-Type Ca2+ Channels. Journal of Neuroscience, 2004, 24, 6334-6342.	3.6	90
16	Manipulating energy migration within single lanthanide activator for switchable upconversion emissions towards bidirectional photoactivation. Nature Communications, 2019, 10, 4416.	12.8	85
17	Functional Characterization of Alternative Splicing in the C Terminus of L-type CaV1.3 Channels. Journal of Biological Chemistry, 2011, 286, 42725-42735.	3.4	83
18	Enhanced Autophagy from Chronic Toxicity of Iron and Mutant A53T α-Synuclein. Journal of Biological Chemistry, 2011, 286, 33380-33389.	3.4	82

#	Article	IF	CITATIONS
19	Smooth Muscle-selective Alternatively Spliced Exon Generates Functional Variation in Cav1.2 Calcium Channels. Journal of Biological Chemistry, 2004, 279, 50329-50335.	3.4	79
20	Alternative Splicing of the CaV1.3 Channel IQ Domain, a Molecular Switch for Ca2+-Dependent Inactivation within Auditory Hair Cells. Journal of Neuroscience, 2006, 26, 10690-10699.	3.6	77
21	Basic Fibroblast Growth Factor-induced Neuronal Differentiation of Mouse Bone Marrow Stromal Cells Requires FGFR-1, MAPK/ERK, and Transcription Factor AP-1. Journal of Biological Chemistry, 2008, 283, 5287-5295.	3.4	76
22	Genetic Basis of Tetrodotoxin Resistance in Pufferfishes. Current Biology, 2005, 15, 2069-2072.	3.9	73
23	A FTH1 gene:pseudogene:microRNA network regulates tumorigenesis in prostate cancer. Nucleic Acids Research, 2018, 46, 1998-2011.	14.5	73
24	Adaptive evolution of tetrodotoxin resistance in animals. Trends in Genetics, 2006, 22, 621-626.	6.7	69
25	Activation of Corticotropin-Releasing Factor Receptor 1 Selectively Inhibits Ca _V 3.2 T-Type Calcium Channels. Molecular Pharmacology, 2008, 73, 1596-1609.	2.3	62
26	Developmental Activation of Calmodulin-Dependent Facilitation of Cerebellar P-Type Ca2+ Current. Journal of Neuroscience, 2005, 25, 8282-8294.	3.6	61
27	Alternative Splicing at C Terminus of CaV1.4 Calcium Channel Modulates Calcium-dependent Inactivation, Activation Potential, and Current Density. Journal of Biological Chemistry, 2012, 287, 832-847.	3.4	56
28	Nitric Oxide, Iron and Neurodegeneration. Frontiers in Neuroscience, 2019, 13, 114.	2.8	55
29	Continuously Tunable Ca2+ Regulation of RNA-Edited CaV1.3 Channels. Cell Reports, 2013, 5, 367-377.	6.4	49
30	Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learning and Memory, 2012, 19, 294-299.	1.3	48
31	Metaplasticity mechanisms restore plasticity and associativity in an animal model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5527-5532.	7.1	48
32	Signature combinatorial splicing profiles of rat cardiac- and smooth-muscle Cav1.2 channels with distinct biophysical properties. Cell Calcium, 2007, 41, 417-428.	2.4	46
33	Alternative Splicing of P/Q-Type Ca 2+ Channels Shapes Presynaptic Plasticity. Cell Reports, 2017, 20, 333-343.	6.4	46
34	Epigenetic regulation of microglial phosphatidylinositol 3â€kinase pathway involved in longâ€ŧerm potentiation and synaptic plasticity in rats. Clia, 2020, 68, 656-669.	4.9	46
35	Enhanced long-term potentiation and impaired learning in mice lacking alternative exon 33 of CaV1.2 calcium channel. Translational Psychiatry, 2022, 12, 1.	4.8	45
36	Modest CaV1.342-selective inhibition by compound 8 is β-subunit dependent. Nature Communications, 2014, 5, 4481.	12.8	43

#	Article	IF	CITATIONS
37	Alternative Splicing of L-type CaV1.2 Calcium Channels: Implications in Cardiovascular Diseases. Genes, 2017, 8, 344.	2.4	43
38	Alternative splicing of voltage-gated calcium channels: from molecular biology to disease. Pflugers Archiv European Journal of Physiology, 2009, 458, 481-487.	2.8	42
39	C-Terminal Alternative Splicing of Ca _V 1.3 Channels Distinctively Modulates Their Dihydropyridine Sensitivity. Molecular Pharmacology, 2013, 84, 643-653.	2.3	42
40	Altered function of neuronal L-type calcium channels in ageing and neuroinflammation: Implications in age-related synaptic dysfunction and cognitive decline. Ageing Research Reviews, 2018, 42, 86-99.	10.9	41
41	Substance P induces plasticity and synaptic tagging/capture in rat hippocampal area CA2. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8741-E8749.	7.1	39
42	Splice Variant Specific Modulation of Ca _V 1.2 Calcium Channel by Galectin-1 Regulates Arterial Constriction. Circulation Research, 2011, 109, 1250-1258.	4.5	37
43	Progesterone Impairs Human Ether-a-go-go-related Gene (HERG) Trafficking by Disruption of Intracellular Cholesterol Homeostasis. Journal of Biological Chemistry, 2011, 286, 22186-22194.	3.4	36
44	Age and gender-dependent alternative splicing of P/Q-type calcium channel EF-hand. Neuroscience, 2007, 145, 1026-1036.	2.3	35
45	Differential splicing patterns of L-Type calcium channel Cav1.2 subunit in hearts of Spontaneously Hypertensive Rats and Wistar Kyoto rats. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 118-130.	4.1	35
46	ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Scientific Reports, 2016, 6, 26119.	3.3	32
47	Non-Invasive Multimodality Imaging Directly Shows TRPM4 Inhibition Ameliorates Stroke Reperfusion Injury. Translational Stroke Research, 2019, 10, 91-103.	4.2	31
48	Mitochondrial Dysfunction and Parkinson's Disease—Near-Infrared Photobiomodulation as a Potential Therapeutic Strategy. Frontiers in Aging Neuroscience, 2020, 12, 89.	3.4	31
49	Alternative splicing modulates diltiazem sensitivity of cardiac and vascular smooth muscle Ca _v 1.2 calcium channels. British Journal of Pharmacology, 2010, 160, 1631-1640.	5.4	30
50	Tyrosine kinase-independent inhibition by genistein on spermatogenic T-type calcium channels attenuates mouse sperm motility and acrosome reaction. Cell Calcium, 2009, 45, 133-143.	2.4	29
51	Exclusion of alternative exon 33 of Ca _V 1.2 calcium channels in heart is proarrhythmogenic. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4288-E4295.	7.1	28
52	Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus. Scientific Reports, 2017, 7, 15571.	3.3	28
53	Molecular alteration of Cav1.2 calcium channel in chronic myocardial infarction. Pflugers Archiv European Journal of Physiology, 2009, 458, 701-711.	2.8	27
54	Iron mitigates DMT1-mediated manganese cytotoxicity via the ASK1-JNK signaling axis: Implications of iron supplementation for manganese toxicity. Scientific Reports, 2016, 6, 21113.	3.3	27

#	Article	IF	CITATIONS
55	Regulation of Blood Pressure by Targeting Ca _V 1.2-Galectin-1 Protein Interaction. Circulation, 2018, 138, 1431-1445.	1.6	26
56	TRPM4-specific blocking antibody attenuates reperfusion injury in a rat model of stroke. Pflugers Archiv European Journal of Physiology, 2019, 471, 1455-1466.	2.8	25
57	APP upregulation contributes to retinal ganglion cell degeneration via JNK3. Cell Death and Differentiation, 2018, 25, 663-678.	11.2	24
58	S-Nitrosylation of Divalent Metal Transporter 1 Enhances Iron Uptake to Mediate Loss of Dopaminergic Neurons and Motoric Deficit. Journal of Neuroscience, 2018, 38, 8364-8377.	3.6	24
59	Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy. Scientific Reports, 2016, 6, 35247.	3.3	22
60	Transgenic Mice Overexpressing the Divalent Metal Transporter 1 Exhibit Iron Accumulation and Enhanced Parkin Expression in the Brain. NeuroMolecular Medicine, 2017, 19, 375-386.	3.4	21
61	Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9. Nucleic Acids Research, 2018, 46, 7323-7338.	14.5	21
62	Separate Locations of Urocortin and its Receptors in Mouse Testis: Function in Male Reproduction and the Relevant Mechanisms. Cellular Physiology and Biochemistry, 2007, 19, 303-312.	1.6	17
63	Alternative Splicing Generates a Novel Truncated Cav1.2 Channel in Neonatal Rat Heart. Journal of Biological Chemistry, 2015, 290, 9262-9272.	3.4	17
64	Postnatal TrkB ablation in corticolimbic interneurons induces social dominance in male mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9909-E9915.	7.1	17
65	Deregulated expression of a longevity gene, Klotho, in the C9orf72 deletion mice with impaired synaptic plasticity and adult hippocampal neurogenesis. Acta Neuropathologica Communications, 2020, 8, 155.	5.2	16
66	Expression of Urocortin 2 and its Inhibitory Effects on Intracellular Ca2+ Via L-Type Voltage-Gated Calcium Channels in Rat Pheochromocytoma (PC12) Cells. Neuropsychopharmacology, 2006, 31, 2600-2609.	5.4	15
67	Urocortin II Inhibits the Apoptosis of Mesenteric Arterial Smooth Muscle Cells Via L-type Calcium Channels in Spontaneously Hypertensive Rats. Cellular Physiology and Biochemistry, 2006, 17, 111-120.	1.6	15
68	Understanding alternative splicing of Cav 1.2 calcium channels for a new approach towards individualized medicine. Journal of Biomedical Research, 2010, 24, 181-186.	1.6	14
69	Stimulation of Synaptic Vesicle Exocytosis by the Mental Disease Gene DISC1 is Mediated by N-Type Voltage-Gated Calcium Channels. Frontiers in Synaptic Neuroscience, 2016, 8, 15.	2.5	14
70	Characterization of CaV1.2 exon 33 heterozygous knockout mice and negative correlation between Rbfox1 and CaV1.2 exon 33 expressions in human heart failure. Channels, 2018, 12, 51-57.	2.8	14
71	Regulation of cardiovascular calcium channel activity by post-translational modifications or interacting proteins. Pflugers Archiv European Journal of Physiology, 2020, 472, 653-667.	2.8	13
72	Differential Binding of Human ApoE Isoforms to Insulin Receptor is Associated with Aberrant Insulin Signaling in AD Brain Samples. NeuroMolecular Medicine, 2018, 20, 124-132.	3.4	12

#	Article	IF	CITATIONS
73	Alternative Splicing at N Terminus and Domain I Modulates CaV1.2 Inactivation and Surface Expression. Biophysical Journal, 2018, 114, 2095-2106.	0.5	12
74	Comparative genomics of the human and Fugu voltage-gated calcium channel α1-subunit gene family reveals greater diversity in Fugu. Gene, 2006, 366, 117-127.	2.2	10
75	Targeting novel human transient receptor potential ankyrin 1 splice variation with splice-switching antisense oligonucleotides. Pain, 2021, 162, 2097-2109.	4.2	4
76	Post-transcriptional modifications and "Calmodulation―of voltage-gated calcium channel function: Reflections by two collaborators of David T Yue. Channels, 2016, 10, 14-19.	2.8	2
77	RNA editing of ion channels and receptors in physiology and neurological disorders. , 2022, 1, .		2
78	Alternative Exon Effect on Phenotype of Cav1.2 Channelopathy: Implications in Timothy Syndrome. , 2014, , 205-224.		1
79	Calcium Channel Splice Variants and Their Effects in Brain and Cardiovascular Function. Advances in Experimental Medicine and Biology, 2021, 1349, 67-86.	1.6	1
80	Neuronal L-type calcium channels in aging. , 2021, , 213-225.		0
81	Splicing and Editing to Customize CaV Channel Structures for Optimal Neural Function. , 2013, , 289-318.		0