
Manoel G Mendonca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2813744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification and management of technical debt: A systematic mapping study. Information and Software Technology, 2016, 70, 100-121.	4.4	200
2	A tertiary study on technical debt: Types, management strategies, research trends, and base information for practitioners. Information and Software Technology, 2018, 102, 117-145.	4.4	125
3	Using Software Dependencies and Churn Metrics to Predict Field Failures: An Empirical Case Study. , 2007, , .		120
4	A Visual Text Mining approach for Systematic Reviews. , 2007, , .		103
5	Knowledge-Sharing Issues in Experimental Software Engineering. Empirical Software Engineering, 2004, 9, 111-137.	3.9	93
6	Replicating software engineering experiments: addressing the tacit knowledge problem. , 0, , .		69
7	Software evolution visualization: A systematic mapping study. Information and Software Technology, 2013, 55, 1860-1883.	4.4	69
8	Validation of an approach for improving existing measurement frameworks. IEEE Transactions on Software Engineering, 2000, 26, 484-499.	5.6	54
9	Perspective-Based Reading: A Replicated Experiment Focused on Individual Reviewer Effectiveness. Empirical Software Engineering, 2006, 11, 119-142.	3.9	52
10	A systematic review on the code smell effect. Journal of Systems and Software, 2018, 144, 450-477.	4.5	49
11	The practitioners' point of view on the concept of technical debt and its causes and consequences: a design for a global family of industrial surveys and its first results from Brazil. Empirical Software Engineering, 2020, 25, 3216-3287.	3.9	44
12	Identifying Code Smells with Multiple Concern Views. , 2010, , .		41
13	The most common causes and effects of technical debt. , 2018, , .		37
14	Information visualization for emergency management: A systematic mapping study. Expert Systems With Applications, 2016, 45, 424-437.	7.6	31
15	Supporting Analysis of Technical Debt Causes and Effects with Cross-Company Probabilistic Cause-Effect Diagrams. , 2019, , .		27
16	An experience management system for a software engineering research organization. , 2001, , .		26
17	A Framework for Software Engineering Experimental Replications. , 2008, , .		26
18	Analyzing the Impact of Beliefs in Software Project Practices. , 2011, , .		24

#	Article	IF	CITATIONS
19	A systematic mapping study on mining software repositories. , 2016, , .		22
20	Challenges of applying ethnography to study software practices. , 2012, , .		20
21	Surveying Software Practitioners on Technical Debt Payment Practices and Reasons for not Paying off Debt Items. , 2020, , .		19
22	An approach to improving existing measurement frameworks. IBM Systems Journal, 1998, 37, 484-501.	3.0	17
23	Investigating the Link between User Stories and Documentation Debt on Software Projects. , 2015, , .		15
24	Identifying self-admitted technical debt through code comment analysis with a contextualized vocabulary. Information and Software Technology, 2020, 121, 106270.	4.4	15
25	Familiarity, Causes and Reactions of Software Practitioners to the Presence of Technical Debt: A Replicated Study in the Chilean Software Industry. , 2019, , .		14
26	User interface evaluation and empirically-based evolution of a prototype experience management tool. IEEE Transactions on Software Engineering, 2003, 29, 838-850.	5.6	13
27	Impacts of agile requirements documentation debt on software projects. , 2016, , .		13
28	An Ontological Model for Fire Emergency Situations. IEICE Transactions on Information and Systems, 2018, E101.D, 108-115.	0.7	13
29	Actions and impediments for technical debt prevention. , 2020, , .		13
30	An exploratory study to investigate the impact of conceptualization in god class detection. , 2013, , .		12
31	Investigating the Identification of Technical Debt Through Code Comment Analysis. Lecture Notes in Business Information Processing, 2017, , 284-309.	1.0	10
32	Using Stack Overflow to Assess Technical Debt Identification on Software Projects. , 2020, , .		10
33	Enterprise Information Systems. Lecture Notes in Business Information Processing, 2012, , .	1.0	9
34	Free and Open Source Software Development and Research: Opportunities for Software Engineering. , 2011, , .		8
35	Simulating families of studies to build confidence in defect hypotheses. Information and Software Technology, 2005, 47, 1019-1032.	4.4	7
36	Extracting Information from Experimental Software Engineering Papers. , 2007, , .		7

#	Article	IF	CITATIONS
37	Applying theory of reasoned action in the context of software development practices. , 2013, , .		7
38	EmergencyFire., 2015,,.		7
39	On the Relationship Between Technical Debt Management and Process Models. IEEE Software, 2021, 38, 56-64.	1.8	7
40	On the Use of Software Visualization to Analyze Software Evolution: An Interactive Differential Approach. Lecture Notes in Business Information Processing, 2012, , 241-255.	1.0	7
41	An interactive differential and temporal approach to visually analyze software evolution. , 2011, , .		6
42	On the proactive and interactive visualization for feature evolution comprehension: An industrial investigation. , 2012, , .		6
43	The problem of conceptualization in god class detection: agreement, strategies and decision drivers. Journal of Software Engineering Research and Development, 2014, 2, .	1.0	6
44	A Strategy Based on Multiple Decision Criteria to Support Technical Debt Management. , 2017, , .		6
45	VisMinerTD - An Open Source Tool to Support the Monitoring of the Technical Debt Evolution using Software Visualization. , 2015, , .		6
46	SourceMiner: Towards an Extensible Multi-perspective Software Visualization Environment. Lecture Notes in Business Information Processing, 2014, , 242-263.	1.0	6
47	Using Context Distance Measurement to Analyze Results across Studies. First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007), 2007, , .	0.0	5
48	Characterizing Software Architecture Changes: An Initial Study. , 2007, , .		5
49	Combining software visualization paradigms to support software comprehension activities. , 2008, , .		5
50	An experimental platform to characterize software comprehension activities supported by visualization. , 2009, , .		5
51	Data Warehousing in an Industrial Software Development Environment. , 2009, , .		5
52	Supporting evidence-based Software Engineering with collaborative information retrieval. , 2010, , .		5
53	OSS developers context-specific Preferred Representational systems: A initial Neurolinguistic text analysis of the Apache mailing list. , 2010, , .		5
54	SourceMiner Evolution: A Tool for Supporting Feature Evolution Comprehension. , 2013, , .		5

Manoel G Mendonca

#	Article	IF	CITATIONS
55	Recommendations to the Adoption of New Software Practices: A Case Study of Team Intention and Behavior in Three Software Companies. , 2013, , .		5
56	Pitfalls and Solutions for Technical Debt Management in Agile Software Projects. IEEE Software, 2021, 38, 42-49.	1.8	5
57	Evaluating the usefulness of software visualization in supporting software comprehension activities. , 2008, , .		4
58	The Role of Organizational Culture in Software Development Practices: A Cross-Case Analysis of Four Software Companies. , 2014, , .		4
59	Exploring decision drivers on god class detection in three controlled experiments. , 2015, , .		4
60	VisminerTD: a tool for automatic identification and interactive monitoring of the evolution of technical debt items. Journal of the Brazilian Computer Society, 2019, 25, .	1.3	4
61	How do Technical Debt Payment Practices Relate to the Effects of the Presence of Debt Items in Software Projects?. , 2021, , .		4
62	Investigating the Use of a Contextualized Vocabulary in the Identification of Technical Debt: A Controlled Experiment. , 2016, , .		4
63	Proposing a visual approach to support the characterization of software comprehension activities. , 2009, , .		3
64	CRISTA: A tool to support code comprehension based on visualization and reading technique. , 2009, , .		3
65	Visualization mechanisms for crowdsourcing information in emergency coordination. , 2015, , .		3
66	Experimentally assessing the combination of multiple visualization strategies for software evolution analysis. Journal of Systems and Software, 2017, 128, 56-71.	4.5	3
67	A Study on Identification of Documentation and Requirement Technical Debt through Code Comment Analysis. , 2018, , .		3
68	Investigating the Relationship between Code Smell Agglomerations and Architectural Concerns. , 2018, , .		3
69	Investigating the Effects of Agile Practices and Processes on Technical Debt - The Viewpoint of the Brazilian Software Industry. , 2018, , .		3
70	Using observational pilot studies to test and improve lab packages. , 2006, , .		2
71	Extracting Information from Experimental Software Engineering Papers. Chilean Computer Science Society (SCCC), Proceedings of the International Conference of the, 2007, , .	0.0	2
72	Em Busca de Agilidade na Análise de Impacto: O Artefato FIR. IEEE Latin America Transactions, 2008, 6, 275-281.	1.6	2

MANOEL G MENDONCA

#	Article	IF	CITATIONS
73	Continuous process improvement at a large software organization. Software Process Improvement and Practice, 2009, 14, 65-83.	1.1	2
74	Guest editorial: Special issue on Databases and Software Engineering. Information Sciences, 2011, 181, 2597-2599.	6.9	2
75	Awareness and Comprehension in Software/Systems Engineering Practice and Education: Trends and Research Directions. , 2012, , .		2
76	Triangulating Experiments in an Industrial Setting to Evaluate Preferred Representational Systems of Software Developers. , 2014, , .		2
77	Identifying Technical Debt through a Code Comment Mining Tool. , 2019, , .		2
78	On the Influence of UML Class Diagrams Refactoring on Code Debt: A Family of Replicated Empirical Studies. , 2020, , .		2
79	Mining Software Change History in an Industrial Environment. , 2009, , .		1
80	Understanding Structural Complexity Evolution: A Quantitative Analysis. , 2012, , .		1
81	Evaluating a LSTM Neural Network and a Word2vec Model in the Classification of Self-admitted Technical Debts and Their Types in Code Comments. Lecture Notes in Business Information Processing, 2021, , 542-559.	1.0	1
82	Industrial and OSS developers' profiles: a family of experiments to evaluate a pioneering neuro-linguistic method for preferred representational systems automatic detection. Journal of the Brazilian Computer Society, 2021, 27, .	1.3	1
83	A Method to Support the Adoption of Reuse Technology in Large Software Organizations. Lecture Notes in Computer Science, 2016, , 73-88.	1.3	1
84	Analyzing Distributions of Emails and Commits from OSS Contributors through Mining Software Repositories - An Exploratory Study. , 2015, , .		1
85	SourceMiner - A Multi-perspective Software Visualization Environment. , 2013, , .		1
86	Supporting Decision Making during Emergencies through Information Visualization of Crowdsourcing Emergency Data. , 2017, , .		1
87	Using Surveys to Build-up Empirical Evidence on Test-Related Technical Debt. , 2020, , .		1
88	Editorial: Selected papers from SBES '07. IET Software, 2009, 3, 67.	2.1	0
89	On the Design of a Contextual Emergency State Builder with Multiple Data Sources. , 2017, , .		0

#	Article	IF	CITATIONS
91	Relationships between design problem agglomerations and concerns having types and domains of software as transverse dimensions. Journal of the Brazilian Computer Society, 2020, 26, .	1.3	Ο
92	Organizing a Set of Empirical Findings on the Causes and Effects of Technical Debt through a Globally Distributed Family of Surveys. , 2021, , .		0