

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2813280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SMAD4 Inhibits Granulosa Cell Apoptosis via the miR-183-96-182 Cluster and FoxO1 Axis. Reproductive Sciences, 2022, 29, 1577-1585.	2.5	4
2	circSLC41A1 Resists Porcine Granulosa Cell Apoptosis and Follicular Atresia by Promoting SRSF1 through miR-9820-5p Sponging. International Journal of Molecular Sciences, 2022, 23, 1509.	4.1	13
3	TGFBR2 is a novel substrate and indirect transcription target of deubiquitylase USP9X in granulosa cells. Journal of Cellular Physiology, 2022, , .	4.1	2
4	A Mutation in Endogenous saRNA miR-23a Influences Granulosa Cells Response to Oxidative Stress. Antioxidants, 2022, 11, 1174.	5.1	5
5	TGF-β1 controls porcine granulosa cell states: A miRNA-mRNA network view. Theriogenology, 2021, 160, 50-60.	2.1	15
6	Transcriptomic Data Analyses Reveal That Sow Fertility-Related lincRNA NORFA Is Essential for the Normal States and Functions of Granulosa Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 610553.	3.7	10
7	SMAD4 Feedback Activates the Canonical TGF-β Family Signaling Pathways. International Journal of Molecular Sciences, 2021, 22, 10024.	4.1	13
8	SMAD4-induced knockdown of the antisense long noncoding RNA BRE-AS contributes to granulosa cell apoptosis. Molecular Therapy - Nucleic Acids, 2021, 25, 251-263.	5.1	10
9	miR-2337 induces TGF-β1 production in granulosa cells by acting as an endogenous small activating RNA. Cell Death Discovery, 2021, 7, 253.	4.7	8
10	NORHA, a novel follicular atresia-related IncRNA, promotes porcine granulosa cell apoptosis via the miR-183-96-182 cluster and FoxO1 axis. Journal of Animal Science and Biotechnology, 2021, 12, 103.	5.3	17
11	TGFâ€Î²/SMAD4 signaling pathway activates the HAS2–HA system to regulate granulosa cell state. Journal of Cellular Physiology, 2020, 235, 2260-2272.	4.1	13
12	BMP7 is a candidate gene for reproductive traits in Yorkshire sows. Animal Reproduction Science, 2020, 221, 106598.	1.5	4
13	miR-130a/TGF-β1 axis is involved in sow fertility by controlling granulosa cell apoptosis. Theriogenology, 2020, 157, 407-417.	2.1	13
14	SMARCA2 is regulated by NORFA/miR-29c, a novel pathway related to female fertility, controls granulosa cell apoptosis. Journal of Cell Science, 2020, 133, .	2.0	14
15	SMAD4 activates Wnt signaling pathway to inhibit granulosa cell apoptosis. Cell Death and Disease, 2020, 11, 373.	6.3	42
16	NORFA, long intergenic noncoding RNA, maintains sow fertility by inhibiting granulosa cell death. Communications Biology, 2020, 3, 131.	4.4	34
17	MiR-126* is a novel functional target of transcription factor SMAD4 in ovarian granulosa cells. Gene, 2019, 711, 143953.	2.2	8
18	CircINHA resists granulosa cell apoptosis by upregulating CTGF as a ceRNA of miR-10a-5p in pig ovarian follicles. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 194420.	1.9	35

Xing Du

#	Article	IF	CITATIONS
19	Smad4 Feedback Enhances BMPR1B Transcription in Ovine Granulosa Cells. International Journal of Molecular Sciences, 2019, 20, 2732.	4.1	18
20	A haplotype variant of Hu sheep <i>follicleâ€stimulating hormone receptor</i> promoter region decreases transcriptional activity. Animal Genetics, 2019, 50, 407-411.	1.7	7
21	miR-1306 Mediates the Feedback Regulation of the TGF-β/SMAD Signaling Pathway in Granulosa Cells. Cells, 2019, 8, 298.	4.1	22
22	Integrated Analysis of miRNA-mRNA Interaction Network in Porcine Granulosa Cells Undergoing Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	18
23	Variants in BMP7 and BMP15 3'-UTRs Associated with Reproductive Traits in a Large White Pig Population. Animals, 2019, 9, 905.	2.3	8
24	A polymorphism in the transcriptional regulatory region strongly influences ovine FSHR mRNA decay. Reproduction in Domestic Animals, 2019, 54, 83-90.	1.4	6
25	SMAD4 feedback regulates the canonical TGF-β signaling pathway to control granulosa cell apoptosis. Cell Death and Disease, 2018, 9, 151.	6.3	55
26	miRâ€181bâ€induced SMAD7 downregulation controls granulosa cell apoptosis through TGFâ€Î² signaling by interacting with the TGFBR1 promoter. Journal of Cellular Physiology, 2018, 233, 6807-6821.	4.1	38
27	The transcription factor SMAD4 and miR-10b contribute to E2 release and cell apoptosis in ovarian granulosa cells by targeting CYP19A1. Molecular and Cellular Endocrinology, 2018, 476, 84-95.	3.2	34
28	TGF-β signaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis. Cell Death and Disease, 2016, 7, e2476-e2476.	6.3	115
29	Androgen receptor and miRNA-126* axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells. Reproduction, 2016, 152, 161-169.	2.6	23
30	A comprehensive transcriptomic view on the role of SMAD4 gene by RNAi-mediated knockdown in porcine follicular granulosa cells. Reproduction, 2016, 152, 81-89.	2.6	23
31	The let-7g microRNA promotes follicular granulosa cell apoptosis by targeting transforming growth factor-β type 1 receptor. Molecular and Cellular Endocrinology, 2015, 409, 103-112.	3.2	56
32	MicroRNA-26b Functions as a Proapoptotic Factor in Porcine Follicular Granulosa Cells by Targeting Sma-and Mad-Related Protein 41. Biology of Reproduction, 2014, 91, 146.	2.7	85
33	MiRâ€92a inhibits porcine ovarian granulosa cell apoptosis by targeting <i>Smad7</i> gene. FEBS Letters, 2014, 588, 4497-4503.	2.8	62