Young-Ki Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2812459/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Age-dependent pathogenic characteristics of SARS-CoV-2 infection in ferrets. Nature Communications, 2022, 13, 21.	12.8	31
2	Coinfection with SARS-CoV-2 and Influenza A Virus Increases Disease Severity and Impairs Neutralizing Antibody and CD4 ⁺ T Cell Responses. Journal of Virology, 2022, 96, jvi0187321.	3.4	38
3	Viral Mimicry of Interleukin-17A by SARS-CoV-2 ORF8. MBio, 2022, 13, e0040222.	4.1	38
4	Methods for fighting emerging pathogens. Nature Methods, 2022, , .	19.0	1
5	FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. Chemical Engineering Journal, 2022, 442, 136143.	12.7	12
6	Multiple HA substitutions in highly pathogenic avian influenza H5Nx viruses contributed to the change in the NA subtype preference. Virulence, 2022, 13, 990-1004.	4.4	1
7	Infection Route Impacts the Pathogenesis of Severe Fever with Thrombocytopenia Syndrome Virus in Ferrets. Viruses, 2022, 14, 1184.	3.3	1
8	Inhibition of a broad range of SARS-CoV-2 variants by antiviral phytochemicals in hACE2 mice. Antiviral Research, 2022, 204, 105371.	4.1	3
9	Pathogenic assessment of avian influenza viruses in migratory birds. Emerging Microbes and Infections, 2021, 10, 565-577.	6.5	7
10	Critical role of neutralizing antibody for SARS-CoV-2 reinfection and transmission. Emerging Microbes and Infections, 2021, 10, 152-160.	6.5	54
11	A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications, 2021, 12, 288.	12.8	224
12	Molecular Signatures of Inflammatory Profile and B-Cell Function in Patients with Severe Fever with Thrombocytopenia Syndrome. MBio, 2021, 12, .	4.1	25
13	Differences in seroprevalence between epicenter and non-epicenter areas of the COVID-19 outbreak in South Korea. Journal of Microbiology, 2021, 59, 530-533.	2.8	2
14	Development of Spike Receptor-Binding Domain Nanoparticles as a Vaccine Candidate against SARS-CoV-2 Infection in Ferrets. MBio, 2021, 12, .	4.1	40
15	Emerging and re-emerging fatal viral diseases. Experimental and Molecular Medicine, 2021, 53, 711-712.	7.7	17
16	Animal Models for Influenza Research: Strengths and Weaknesses. Viruses, 2021, 13, 1011.	3.3	30
17	Severe fever with thrombocytopenia syndrome virus: emerging novel phlebovirus and their control strategy. Experimental and Molecular Medicine, 2021, 53, 713-722.	7.7	80
18	Targeting Antigens for Universal Influenza Vaccine Development. Viruses, 2021, 13, 973.	3.3	14

#	Article	IF	CITATIONS
19	Humoral and cellular immune response to Plasmodium vivax VIR recombinant and synthetic antigens in individuals naturally exposed to P. vivax in the Republic of Korea. Malaria Journal, 2021, 20, 288.	2.3	7
20	Single-cell transcriptome of bronchoalveolar lavage fluid reveals sequential change of macrophages during SARS-CoV-2 infection in ferrets. Nature Communications, 2021, 12, 4567.	12.8	43
21	Development of a Rapid Fluorescent Diagnostic System to Detect Subtype H9 Influenza A Virus in Chicken Feces. International Journal of Molecular Sciences, 2021, 22, 8823.	4.1	3
22	Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. Biochemical and Biophysical Research Communications, 2021, 566, 135-140.	2.1	46
23	Experimental Animal Models of Coronavirus Infections: Strengths and Limitations. Immune Network, 2021, 21, e12.	3.6	12
24	Evaluation of global evolutionary variations in the early stage of SARS-CoV-2 pandemic. Heliyon, 2021, 7, e08170.	3.2	0
25	Antiviral effects of human placenta hydrolysate (Laennec \hat{A}^{\otimes}) against SARS-CoV-2 in vitro and in the ferret model. Journal of Microbiology, 2021, 59, 1056-1062.	2.8	7
26	Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity. Journal of Microbiology, 2020, 58, 886-891.	2.8	28
27	Serologic Evaluation of Healthcare Workers Caring for COVID-19 Patients in the Republic of Korea. Frontiers in Microbiology, 2020, 11, 587613.	3.5	8
28	Viable SARS-CoV-2 in various specimens from COVID-19 patients. Clinical Microbiology and Infection, 2020, 26, 1520-1524.	6.0	180
29	Neutralizing Antibody Production in Asymptomatic and Mild COVID-19 Patients, in Comparison with Pneumonic COVID-19 Patients. Journal of Clinical Medicine, 2020, 9, 2268.	2.4	106
30	Antiviral Efficacies of FDA-Approved Drugs against SARS-CoV-2 Infection in Ferrets. MBio, 2020, 11, .	4.1	165
31	Infection and Rapid Transmission of SARS-CoV-2 in Ferrets. Cell Host and Microbe, 2020, 27, 704-709.e2.	11.0	815
32	Genetic and pathogenic diversity of severe fever with thrombocytopenia syndrome virus (SFTSV) in South Korea. JCI Insight, 2020, 5, .	5.0	58
33	Greater Efficacy of Black Ginseng (CJ EnerG) over Red Ginseng against Lethal Influenza A Virus Infection. Nutrients, 2019, 11, 1879.	4.1	18
34	Rapid and simple colorimetric detection of multiple influenza viruses infecting humans using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. BMC Infectious Diseases, 2019, 19, 676.	2.9	144
35	Shedding and Transmission Modes of Severe Fever With Thrombocytopenia Syndrome Phlebovirus in a Ferret Model. Open Forum Infectious Diseases, 2019, 6,	0.9	14
36	Seroprevalence of Severe Fever with Thrombocytopenia Syndrome Phlebovirus in Domesticated Deer in South Korea. Virologica Sinica, 2019, 34, 501-507.	3.0	4

#	Article	IF	CITATIONS
37	Development of a SFTSV DNA vaccine that confers complete protection against lethal infection in ferrets. Nature Communications, 2019, 10, 3836.	12.8	51
38	Development of a rapid, simple and efficient one-pot cloning method for a reverse genetics system of broad subtypes of influenza A virus. Scientific Reports, 2019, 9, 8318.	3.3	4
39	Efficacy of A/H1N1/2009 split inactivated influenza A vaccine (GC1115) in mice and ferrets. Journal of Microbiology, 2019, 57, 163-169.	2.8	3
40	Cross-genotype protection of live-attenuated vaccine candidate for severe fever with thrombocytopenia syndrome virus in a ferret model. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26900-26908.	7.1	25
41	A Novel Neuraminidase-Dependent Hemagglutinin Cleavage Mechanism Enables the Systemic Spread of an H7N6 Avian Influenza Virus. MBio, 2019, 10, .	4.1	10
42	<i>In Vitro</i> and <i>In Vivo</i> Characterization of Novel Neuraminidase Substitutions in Influenza A(H1N1)pdm09 Virus Identified Using Laninamivir-Mediated <i>In Vitro</i> Selection. Journal of Virology, 2019, 93, .	3.4	6
43	Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nature Microbiology, 2019, 4, 429-437.	13.3	46
44	Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nature Microbiology, 2019, 4, 438-446.	13.3	66
45	Preclinical evaluation of the efficacy of an H5N8 vaccine candidate (IDCDC-RG43A) in mouse and ferret models for pandemic preparedness. Vaccine, 2019, 37, 484-493.	3.8	7
46	Comparison of the virulence and transmissibility of canine H3N2 influenza viruses and characterization of their canine adaptation factors. Emerging Microbes and Infections, 2018, 7, 1-14.	6.5	14
47	Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016–2017 winter season. Emerging Microbes and Infections, 2018, 7, 1-10.	6.5	32
48	Screening for Neuraminidase Inhibitor Resistance Markers among Avian Influenza Viruses of the N4, N5, N6, and N8 Neuraminidase Subtypes. Journal of Virology, 2018, 92, .	3.4	42
49	Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models. Virulence, 2018, 9, 133-148.	4.4	13
50	Enhanced neutralizing antibody response induced by inactivated enterovirus 71 in cynomolgus monkeys. PLoS ONE, 2018, 13, e0202552.	2.5	1
51	Safe, high-throughput screening of natural compounds of MERS-CoV entry inhibitors using a pseudovirus expressing MERS-CoV spike protein. International Journal of Antimicrobial Agents, 2018, 52, 730-732.	2.5	40
52	Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases. Yonsei Medical Journal, 2018, 59, 176.	2.2	9
53	Epidemiology of severe fever and thrombocytopenia syndrome virus infection and the need for therapeutics for the prevention. Clinical and Experimental Vaccine Research, 2018, 7, 43.	2.2	47
54	Seroprevalence and genetic characterization of severe fever with thrombocytopenia syndrome virus in domestic goats in South Korea. Ticks and Tick-borne Diseases, 2018, 9, 1202-1206.	2.7	21

#	Article	IF	CITATIONS
55	The immunogenicity and protection effect of an inactivated coxsackievirus A6, A10, and A16 vaccine against hand, foot, and mouth disease. Vaccine, 2018, 36, 3445-3452.	3.8	30
56	An I436N substitution confers resistance of influenza A(H1N1)pdm09 viruses to multiple neuraminidase inhibitors without affecting viral fitness. Journal of General Virology, 2018, 99, 292-302.	2.9	11
57	Generation of a High-Growth Influenza Vaccine Strain in MDCK Cells for Vaccine Preparedness. Journal of Microbiology and Biotechnology, 2018, 28, 997-1006.	2.1	15
58	Vaccine Efficacy of Inactivated, Chimeric Hemagglutinin H9/H5N2 Avian Influenza Virus and Its Suitability for the Marker Vaccine Strategy. Journal of Virology, 2017, 91, .	3.4	18
59	Rapid acquisition of polymorphic virulence markers during adaptation of highly pathogenic avian influenza H5N8 virus in the mouse. Scientific Reports, 2017, 7, 40667.	3.3	13
60	Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea. Infection, Genetics and Evolution, 2017, 53, 56-67.	2.3	23
61	Evaluation of the Immune Responses to and Cross-Protective Efficacy of Eurasian H7 Avian Influenza Viruses. Journal of Virology, 2017, 91, .	3.4	10
62	Schlafen 14 (SLFN14) is a novel antiviral factor involved in the control of viral replication. Immunobiology, 2017, 222, 979-988.	1.9	35
63	An inactivated hand-foot-and-mouth disease vaccine using the enterovirus 71 (C4a) strain isolated from a Korean patient induces a strong immunogenic response in mice. PLoS ONE, 2017, 12, e0178259.	2.5	13
64	Molecular genomic characterization of tick- and human-derived severe fever with thrombocytopenia syndrome virus isolates from South Korea. PLoS Neglected Tropical Diseases, 2017, 11, e0005893.	3.0	54
65	Transcriptomic features of primary prostate cancer and their prognostic relevance to castration-resistant prostate cancer. Oncotarget, 2017, 8, 114845-114855.	1.8	16
66	Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016. Eurosurveillance, 2017, 22, .	7.0	44
67	Eyedrop Vaccination Induced Systemic and Mucosal Immunity against Influenza Virus in Ferrets. PLoS ONE, 2016, 11, e0157634.	2.5	5
68	Development of infectious clones of a wild-type Korean rabies virus and evaluation of their pathogenic potential. Virus Research, 2016, 223, 122-130.	2.2	3
69	Novel Highly Pathogenic Avian A(H5N2) and A(H5N8) Influenza Viruses of Clade 2.3.4.4 from North America Have Limited Capacity for Replication and Transmission in Mammals. MSphere, 2016, 1, .	2.9	56
70	Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity. Nature Immunology, 2016, 17, 1252-1262.	14.5	76
71	Injectable and Pathogenâ€Mimicking Hydrogels for Enhanced Protective Immunity against Emerging and Highly Pathogenic Influenza Virus. Small, 2016, 12, 6279-6288	10.0	8
72	MDA7/IL-24 is an anti-viral factor that inhibits influenza virus replication. Journal of Microbiology, 2016, 54, 695-700.	2.8	17

#	Article	IF	CITATIONS
73	Avian Influenza A Viruses: Evolution and Zoonotic Infection. Seminars in Respiratory and Critical Care Medicine, 2016, 37, 501-511.	2.1	23
74	Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus. Virology, 2016, 498, 36-43.	2.4	16
75	Genetic diversity and pathogenic potential of low pathogenic H7 avian influenza viruses isolated from wild migratory birds in Korea. Infection, Genetics and Evolution, 2016, 45, 268-284.	2.3	10
76	Genetic characteristics of highly pathogenic H5N8 avian influenza viruses isolated from migratory wild birds in South Korea during 2014-2015. Archives of Virology, 2016, 161, 2749-2764.	2.1	11
77	Immunostained plaque assay for detection and titration of rabies virus infectivity. Journal of Virological Methods, 2016, 228, 21-25.	2.1	3
78	Environmental Contamination and Viral Shedding in MERS Patients During MERS-CoV Outbreak in South Korea. Clinical Infectious Diseases, 2016, 62, 755-760.	5.8	165
79	Growth and Pathogenic Potential of Naturally Selected Reassortants after Coinfection with Pandemic H1N1 and Highly Pathogenic Avian Influenza H5N1 Viruses. Journal of Virology, 2016, 90, 616-623.	3.4	4
80	One-Pot Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) for Detecting MERS-CoV. Frontiers in Microbiology, 2016, 7, 2166.	3.5	99
81	Increased Expression of Herpes Virus-Encoded hsv1-miR-H18 and hsv2-miR-H9-5p in Cancer-Containing Prostate Tissue Compared to That in Benign Prostate Hyperplasia Tissue. International Neurourology Journal, 2016, 20, 122-130.	1.2	12
82	Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection. Virology Journal, 2015, 12, 160.	3.4	14
83	Dynamic changes in host gene expression associated with H5N8 avian influenza virus infection in mice. Scientific Reports, 2015, 5, 16512.	3.3	40
84	Mouse adaptation of influenza B virus increases replication in the upper respiratory tract and results in droplet transmissibility in ferrets. Scientific Reports, 2015, 5, 15940.	3.3	20
85	Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. Infection, Genetics and Evolution, 2015, 34, 378-393.	2.3	11
86	Unique Determinants of Neuraminidase Inhibitor Resistance among N3, N7, and N9 Avian Influenza Viruses. Journal of Virology, 2015, 89, 10891-10900.	3.4	43
87	Profiling and Characterization of Influenza Virus N1 Strains Potentially Resistant to Multiple Neuraminidase Inhibitors. Journal of Virology, 2015, 89, 287-299.	3.4	54
88	Urinary MicroRNAs of Prostate Cancer: Virus-Encoded hsv1-miRH18 and hsv2-miR-H9-5p Could Be Valuable Diagnostic Markers. International Neurourology Journal, 2015, 19, 74-84.	1.2	40
89	Assessment of mOMV adjuvant efficacy in the pathogenic H1N1 influenza virus vaccine. Clinical and Experimental Vaccine Research, 2014, 3, 194.	2.2	7
90	Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clinical and Experimental Vaccine Research, 2014, 3, 140.	2.2	22

#	Article	IF	CITATIONS
91	Evaluation of heterosubtypic cross-protection against highly pathogenic H5N1 by active infection with human seasonal influenza A virus or trivalent inactivated vaccine immunization in ferret models. Journal of General Virology, 2014, 95, 793-798.	2.9	15
92	Pathobiological features of a novel, highly pathogenic avian influenza A(H5N8) virus. Emerging Microbes and Infections, 2014, 3, 1-13.	6.5	106
93	Genomic analysis and pathogenic characteristics of Type 2 porcine reproductive and respiratory syndrome virus nsp2 deletion strains isolated in Korea. Veterinary Microbiology, 2014, 170, 232-245.	1.9	19
94	Avian-derived NS gene segments alter pathogenicity of the A/Puerto Rico/8/34 virus. Virus Research, 2014, 179, 64-72.	2.2	3
95	Crucial Roles of Interleukin-7 in the Development of T Follicular Helper Cells and in the Induction of Humoral Immunity. Journal of Virology, 2014, 88, 8998-9009.	3.4	68
96	A packaged paper fluidic-based microdevice for detecting gene expression of influenza A virus. Biosensors and Bioelectronics, 2014, 61, 485-490.	10.1	27
97	Delayed hypersensitivity reaction resulting in maculopapular-type eruption due to entecavir in the treatment of chronic hepatitis B. World Journal of Gastroenterology, 2014, 20, 15931.	3.3	15
98	Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. Journal of General Virology, 2013, 94, 1230-1235.	2.9	20
99	Emergence of Mammalian Species-Infectious and -Pathogenic Avian Influenza H6N5 Virus with No Evidence of Adaptation. Journal of Virology, 2011, 85, 13271-13277.	3.4	31
100	Clinical characteristics of acute lower respiratory tract infections due to 13 respiratory viruses detected by multiplex PCR in children. Korean Journal of Pediatrics, 2010, 53, 373.	1.9	27
101	Cenetic Characteristics and Phylogenetic Analysis of Influenza Type B Viruses Isolated from Nasopharyngeal Suction Samples of Korean Patients. Journal of Bacteriology and Virology, 2009, 39, 125.	0.1	2
102	The Polymerase Acidic Protein Gene of Influenza A Virus Contributes to Pathogenicity in a Mouse Model. Journal of Virology, 2009, 83, 12325-12335.	3.4	149
103	Ecology of H3 avian influenza viruses in Korea and assessment of their pathogenic potentials. Journal of General Virology, 2008, 89, 949-957.	2.9	42
104	Development of multiplex rt-PCR assays for rapid detection and subtyping of influenza type A viruses from clinical specimens. Journal of Microbiology and Biotechnology, 2008, 18, 1164-9.	2.1	20
105	Continuing evolution of H9 influenza viruses in Korean poultry. Virology, 2007, 359, 313-323.	2.4	106
106	Activation of the intrinsic mitochondrial apoptotic pathway in swine influenza virus-mediated cell death. Experimental and Molecular Medicine, 2006, 38, 11-17.	7.7	21