
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811835/publications.pdf Version: 2024-02-01

MACIEL KRAWCZYK

#	Article	IF	CITATIONS
1	Control of the Phase of Reflected Spin Waves From Magnonic Gires–Tournois Interferometer of Subwavelength Width. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
2	Self-Imaging of Spin Waves in Thin, Multimode Ferromagnetic Waveguides. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	1
3	Goos-HÃ ¤ chen shift at Brillouin light scattering by a magnetostatic wave in the Damon-Eshbach configuration [Invited]. Optical Materials Express, 2022, 12, 717.	3.0	1
4	Advances in Magnetics Roadmap on Spin-Wave Computing. IEEE Transactions on Magnetics, 2022, 58, 1-72.	2.1	179
5	Inelastic Spin-Wave Beam Scattering by Edge-Localized Spin Waves in a Ferromagnetic Thin Film. Physical Review Applied, 2022, 17, .	3.8	3
6	Precessional dynamics of geometrically scaled magnetostatic spin waves in two-dimensional magnonic fractals. Physical Review B, 2022, 105, .	3.2	2
7	Competing spin wave emission mechanisms revealed by time-resolved x-ray microscopy. Physical Review B, 2021, 103, .	3.2	9
8	Local non-linear excitation of sub-100 nm bulk-type spin waves by edge-localized spin waves in magnetic films. Applied Physics Letters, 2021, 118, .	3.3	8
9	Real-Space Observation of Magnon Interaction with Driven Space-Time Crystals. Physical Review Letters, 2021, 126, 057201.	7.8	34
10	Resonant subwavelength control of the phase of spin waves reflected from a Gires–Tournois interferometer. Scientific Reports, 2021, 11, 4428.	3.3	11
11	Multifunctional operation of the double-layer ferromagnetic structure coupled by a rectangular nanoresonator. Applied Physics Letters, 2021, 118, 182406.	3.3	6
12	Phase resolved observation of spin wave modes in antidot lattices. Applied Physics Letters, 2021, 118, .	3.3	9
13	Nonresonant amplification of spin waves through interface magnetoelectric effect and spin-transfer torque. Scientific Reports, 2021, 11, 15692.	3.3	3
14	The 2021 Magnonics Roadmap. Journal of Physics Condensed Matter, 2021, 33, 413001.	1.8	287
15	Spin-Wave Dispersion Measurement by Variable-Gap Propagating Spin-Wave Spectroscopy. Physical Review Applied, 2021, 16, .	3.8	13
16	The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns. Solid State Physics, 2021, , 29-82.	0.5	1
17	The interplay between spin waves and microwave magnetic field in magnetization textures and planar magnetic nanostructures. , 2021, , .		0
18	Edge localization of spin waves in antidot multilayers with perpendicular magnetic anisotropy. Physical Review B, 2020, 101, .	3.2	13

#	Article	IF	CITATIONS
19	Spin-wave Talbot effect in a thin ferromagnetic film. Physical Review B, 2020, 102, .	3.2	12
20	Spin-wave spectroscopy of individual ferromagnetic nanodisks. Nanoscale, 2020, 12, 21207-21217.	5.6	24
21	Direct observation of spin-wave focusing by a Fresnel lens. Physical Review B, 2020, 102, .	3.2	19
22	Bimeron clusters in chiral antiferromagnets. Npj Computational Materials, 2020, 6, .	8.7	34
23	Building Blocks for Magnon Optics: Emission and Conversion of Short Spin Waves. ACS Nano, 2020, 14, 17184-17193.	14.6	9
24	Direct Imaging of Highâ€Frequency Multimode Spin Wave Propagation in Cobaltâ€Iron Waveguides Using Xâ€Ray Microscopy beyond 10 GHz. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000373.	2.4	5
25	Anomalous Refraction of Spin Waves as a Way to Guide Signals in Curved Magnonic Multimode Waveguides. Physical Review Applied, 2020, 13, .	3.8	13
26	Demonstration of <i>k</i> -vector selective microscopy for nanoscale mapping of higher order spin wave modes. Nanoscale, 2020, 12, 17238-17244.	5.6	12
27	Spin-Wave Diode and Circulator Based on Unidirectional Coupling. Physical Review Applied, 2020, 14, .	3.8	42
28	The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns. Solid State Physics, 2019, , 79-132.	0.5	10
29	Interaction Between Thermal Magnons and Phonons in a CoFeB/Au Multilayer. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	5
30	Formation of Néel-type skyrmions in an antidot lattice with perpendicular magnetic anisotropy. Physical Review B, 2019, 100, .	3.2	18
31	Inelastic Spinâ€Wave Scattering by Bloch Domain Wall Flexure Oscillations. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1800589.	2.4	5
32	Magnons in a Quasicrystal: Propagation, Extinction, and Localization of Spin Waves in Fibonacci Structures. Physical Review Applied, 2019, 11, .	3.8	32
33	Nonuniform Spin-Wave Softening in Two-Dimensional Magnonic Crystals as a Tool for Opening Omnidirectional Magnonic Band Gaps. Physical Review Applied, 2019, 11, .	3.8	18
34	Spin wave collimation using a flat metasurface. Nanoscale, 2019, 11, 9743-9748.	5.6	12
35	Spin-Wave Phase Inverter upon a Single Nanodefect. ACS Applied Materials & Interfaces, 2019, 11, 17654-17662.	8.0	46
36	Reprogrammability and Scalability of Magnonic Fibonacci Quasicrystals. Physical Review Applied, 2019, 11, .	3.8	27

#	Article	IF	CITATIONS
37	Remagnetization in arrays of ferromagnetic nanostripes with periodic and quasiperiodic order. Physical Review B, 2019, 99, .	3.2	8
38	Exchange spin waves transmission through the interface between two antiferromagnetically coupled ferromagnetic media. Journal of Magnetism and Magnetic Materials, 2019, 484, 484-489.	2.3	5
39	Spin-polarized currents driven by spin-dependent surface screening. Physical Review B, 2019, 100, .	3.2	1
40	Influence of nonmagnetic dielectric spacers on the spin-wave response of one-dimensional planar magnonic crystals. Physical Review B, 2019, 100, .	3.2	10
41	Standing spin waves in perpendicularly magnetized triangular dots. Physical Review B, 2019, 100, .	3.2	6
42	Reversible tuning of omnidirectional band gaps in two-dimensional magnonic crystals by magnetic field and in-plane squeezing. Physical Review B, 2019, 100, .	3.2	8
43	Spin wave modes in a cylindrical nanowire in crossover dipolar-exchange regime. Journal Physics D: Applied Physics, 2019, 52, 075003.	2.8	9
44	Visualizing nanoscale spin waves using MAXYMUS. , 2019, , .		9
45	Light guiding, bending, and splitting via local modification of interfaces of a photonic waveguide. Optics Letters, 2019, 44, 4725.	3.3	4
46	Embedded arrays of annular apertures with multiband near-zero-index behavior and demultiplexing capability at near-infrared. Optical Materials Express, 2019, 9, 3169.	3.0	8
47	Azimuthal spin-wave excitations in magnetic nanodots over the soliton background: Vortex, Bloch, and Néel-like skyrmions. Physical Review B, 2018, 97, .	3.2	31
48	Co- and contra-directional vertical coupling between ferromagnetic layers with grating for short-wavelength spin wave generation. New Journal of Physics, 2018, 20, 053021.	2.9	18
49	Spin-wave beam propagation in ferromagnetic thin films with graded refractive index: Mirage effect and prospective applications. Physical Review B, 2018, 97, .	3.2	25
50	Direct Observation of Sub-100 nm Spin Wave Propagation in Magnonic Wave-Guides. , 2018, , .		0
51	Magnonic band gap and mode hybridization in continuous permalloy films induced by vertical dynamic coupling with an array of permalloy ellipses. Physical Review B, 2018, 98, .	3.2	21
52	Spin-wave dynamics in artificial anti-spin-ice systems: Experimental and theoretical investigations. Physical Review B, 2018, 98, .	3.2	23
53	Goos–Hächen effect for Brillouin light scattering by acoustic phonons. Optics Letters, 2018, 43, 3965.	3.3	2
54	Control of the Spin Wave Phase in Transmission through the Ultrathin Interface between Exchange Coupled Ferromagnetic Materials. Acta Physica Polonica A, 2018, 133, 480-482.	0.5	3

#	Article	IF	CITATIONS
55	The Resonant Dynamic Magnetization Distribution in Ferromagnetic Thin Film with the Antidot. Acta Physica Polonica A, 2018, 133, 492-494.	0.5	2
56	Excitation of Bulk Spin Waves by Acoustic Wave at the Plane Defect of a Ferromagnet. Acta Physica Polonica A, 2018, 133, 489-491.	0.5	1
57	Geometrical complexity of the antidots unit cell effect on the spin wave excitations spectra. Journal Physics D: Applied Physics, 2017, 50, 185003.	2.8	10
58	Goos–Hächen Shift of a Spin-Wave Beam at the Interface Between Two Ferromagnets. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	8
59	Spin waves in periodic antidot waveguide of complex base. Journal Physics D: Applied Physics, 2017, 50, 275003.	2.8	4
60	Faraday Effect in Bi-Periodic Photonic-Magnonic Crystals. IEEE Transactions on Magnetics, 2017, 53, 1-5.	2.1	19
61	All-Dielectric Metasurfaces Based on Cross-Shaped Resonators for Color Pixels with Extended Gamut. ACS Photonics, 2017, 4, 1076-1082.	6.6	127
62	Broadband magnetoelastic coupling in magnonic-phononic crystals for high-frequency nanoscale spin-wave generation. Physical Review B, 2017, 95, .	3.2	28
63	Spin excitation spectrum in a magnetic nanodot with continuous transitions between the vortex, Bloch-type skyrmion, and NA©el-type skyrmion states. Physical Review B, 2017, 95, .	3.2	65
64	Goos-Hächen shift of a spin-wave beam transmitted through anisotropic interface between two ferromagnets. Physical Review B, 2017, 95, .	3.2	36
65	Magnetization reversal mechanism in patterned (square to wave-like) Py antidot lattices. Journal Physics D: Applied Physics, 2017, 50, 025004.	2.8	10
66	Goos-HÃ ¤ chen effect in light transmission through biperiodic photonic-magnonic crystals. Physical Review A, 2017, 96, .	2.5	24
67	Spin-wave nonreciprocity and magnonic band structure in a thin permalloy film induced by dynamical coupling with an array of Ni stripes. Physical Review B, 2017, 96, .	3.2	43
68	Bi‣tability of Magnetic Skyrmions in Ultrathin Multilayer Nanodots Induced by Magnetostatic Interaction. Physica Status Solidi - Rapid Research Letters, 2017, 11, 1700259.	2.4	15
69	The switching of strong spin wave beams in patterned garnet films. Scientific Reports, 2017, 7, 8771.	3.3	21
70	Polarization tunable all-dielectric color filters based on cross-shaped Si nanoantennas. Scientific Reports, 2017, 7, 8092.	3.3	43
71	Magnonic band structure in a Co/Pd stripe domain system investigated by Brillouin light scattering and micromagnetic simulations. Physical Review B, 2017, 96, .	3.2	45
72	Coupled-mode theory for the interaction between acoustic waves and spin waves in magnonic-phononic crystals: Propagating magnetoelastic waves. Physical Review B, 2017, 96, .	3.2	21

#	Article	IF	CITATIONS
73	Goos-HÃ ¤ chen shift of a spin-wave beam in transmission through interface between two ferromagnets. , 2017, , .		0
74	Spin wave beam propagation through the area with graded refractive index. , 2017, , .		0
75	Polarization Based Tunable Filters Using Si Nanoantennas. , 2017, , .		0
76	Spin Wave Optics in Patterned Garnet. , 2017, , 139-170.		1
77	Spin wave damping in periodic and quasiperiodic magnonic structures. Journal Physics D: Applied Physics, 2016, 49, 175001.	2.8	19
78	Magneto-optic waveguide and dielectric photonic crystal as a new complex structure for photonics. , 2016, , .		0
79	Microwave excitation of spin wave beams in thin ferromagnetic films. Scientific Reports, 2016, 6, 22367.	3.3	36
80	Optical properties of a four-layer waveguiding nanocomposite structure in near-IR regime. Optical and Quantum Electronics, 2016, 48, 1.	3.3	2
81	Complex photonic structure based on magneto-optic waveguide and photonic crystal. , 2016, , .		0
82	Confined states in photonic-magnonic crystals with complex unit cell. Journal of Applied Physics, 2016, 120, .	2.5	24
83	Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime. Journal Physics D: Applied Physics, 2016, 49, 435103.	2.8	22
84	Influence of the Dzyaloshinskii-Moriya interaction on the FMR spectrum of magnonic crystals and confined structures. Physical Review B, 2016, 94, .	3.2	20
85	Complex waveguide based on a magneto-optic layer and a dielectric photonic crystal. Superlattices and Microstructures, 2016, 100, 45-56.	3.1	4
86	Superconducting photonic crystals with defect structure. , 2016, , .		1
87	Collective dynamical skyrmion excitations in a magnonic crystal. Physical Review B, 2016, 93, .	3.2	48
88	Nonreciprocal properties of GHz frequency surface spin waves in nanopatterned ferromagnetic films. , 2016, , .		0
89	Spin waves in one-dimensional bicomponent magnonic quasicrystals. Physical Review B, 2015, 92, . Tailoring dynamic magnetic characteristics of <mml:math< td=""><td>3.2</td><td>29</td></mml:math<>	3.2	29
90	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:mi mathvariant="normal">F < mml:msub> < mml:mi mathvariant="normal">e < mml:mn>60 < mml:mi mathvariant="normal">A < mml:msub> < mml:mi mathvariant="normal">I < mml:msub> < mml:mi	3.2	18

#	Article	IF	CITATIONS
91	Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film. Physical Review B, 2015, 92, .	3.2	40
92	Spin-wave dynamics in permalloy/cobalt magnonic crystals in the presence of a nonmagnetic spacer. Physical Review B, 2015, 92, .	3.2	20
93	Magnonic crystals—Prospective structures for shaping spin waves in nanoscale. Low Temperature Physics, 2015, 41, 745-759.	0.6	31
94	Universal dependence of the spin wave band structure on the geometrical characteristics of two-dimensional magnonic crystals. Scientific Reports, 2015, 5, 10367.	3.3	43
95	Magnonic band gaps in YIG-based one-dimensional magnonic crystals: An array of grooves versus an array of metallic stripes. Physical Review B, 2015, 91, .	3.2	43
96	All-Angle Collimation for Spin Waves. IEEE Magnetics Letters, 2015, 6, 1-4.	1.1	8
97	Nonreciprocity of edge modes in 1D magnonic crystal. Journal of Magnetism and Magnetic Materials, 2015, 378, 313-319.	2.3	21
98	Goos-Hächen effect and bending of spin wave beams in thin magnetic films. Applied Physics Letters, 2014, 105, .	3.3	50
99	Optically induced spin wave dynamics in [Co/Pd]8 antidot lattices with perpendicular magnetic anisotropy. Applied Physics Letters, 2014, 105, .	3.3	26
100	Nonreciprocal dispersion of spin waves in ferromagnetic thin films covered with a finite-conductivity metal. Journal of Applied Physics, 2014, 115, .	2.5	36
101	Observation of magnonic band gaps in magnonic crystals with nonreciprocal dispersion relation. Physical Review B, 2014, 90, .	3.2	55
102	Magnonic Bandgaps in Metalized 1-D YIG Magnonic Crystals. IEEE Transactions on Magnetics, 2014, 50, 1-3.	2.1	9
103	Spin Waves and Electromagnetic Waves in Photonic-Magnonic Crystals. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	13
104	Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals. Journal of Applied Physics, 2014, 115, 043917.	2.5	30
105	Review and prospects of magnonic crystals and devices with reprogrammable band structure. Journal of Physics Condensed Matter, 2014, 26, 123202.	1.8	449
106	Influence of structural changes in a periodic antidot waveguide on the spin-wave spectra. Physical Review B, 2014, 89, .	3.2	27
107	Photonic-magnonic crystals: Multifunctional periodic structures for magnonic and photonic applications. Journal of Applied Physics, 2014, 115, .	2.5	45
108	Effects of the competition between the exchange and dipolar interactions in the spin-wave spectrum of two-dimensional circularly magnetized nanodots. Journal Physics D: Applied Physics, 2014, 47, 015003.	2.8	24

#	Article	IF	CITATIONS
109	Photonic-magnonic structures. , 2014, , .		1
110	Spin Wave Dispersion in Permalloy Antidot Array With Alternating Holes Diameter. IEEE Transactions on Magnetics, 2013, 49, 3093-3096.	2.1	7
111	Magnonic band structures in two-dimensional bi-component magnonic crystals with in-plane magnetization. Journal Physics D: Applied Physics, 2013, 46, 495003.	2.8	69
112	Reciprocal Damon-Eshbach-type spin wave excitation in a magnonic crystal due to tunable magnetic symmetry. Applied Physics Letters, 2013, 102, .	3.3	32
113	Nonreciprocity of spin waves in metallized magnonic crystal. New Journal of Physics, 2013, 15, 113023.	2.9	69
114	Standing spin waves in magnonic crystals. Journal of Applied Physics, 2013, 113, .	2.5	53
115	Proposal for a Standard Micromagnetic Problem: Spin Wave Dispersion in a Magnonic Waveguide. IEEE Transactions on Magnetics, 2013, 49, 524-529.	2.1	73
116	Magnonic Band Engineering by Intrinsic and Extrinsic Mirror Symmetry Breaking in Antidot Spin-Wave Waveguides. Scientific Reports, 2013, 3, 2444.	3.3	47
117	Time-resolved measurement of spin-wave spectra in CoO capped [Co(t)/Pt(7Ã)]n-1 Co(t) multilayer systems. Journal of Applied Physics, 2012, 111, 07C507.	2.5	10
118	The effect of interface modulation on phononic band gaps for longitudinal modes in semiconductor superlattices. Journal of Applied Physics, 2012, 111, 104312.	2.5	3
119	Effect of magnetization pinning on the spectrum of spin waves in magnonic antidot waveguides. Physical Review B, 2012, 86, .	3.2	48
120	The impact of the lattice symmetry and the inclusion shape on the spectrum of 2D magnonic crystals. Journal of Applied Physics, 2012, 111, .	2.5	39
121	Stability of the Landau state in square two-dimensional magnetic nanorings. Journal of Applied Physics, 2012, 112, 043901.	2.5	11
122	Large magnonic band gaps and spectra evolution in three-dimensional magnonic crystals based on magnetoferritin nanoparticles. Physical Review B, 2012, 86, .	3.2	45
123	Investigation of spin wave damping in three-dimensional magnonic crystals using the plane wave method. Physical Review B, 2012, 86, .	3.2	30
124	Spin wave localization and softening in rod-shaped magnonic crystals with different terminations. Journal of Applied Physics, 2012, 112, 033911.	2.5	7
125	Forbidden Band Gaps in the Spin-Wave Spectrum of a Two-Dimensional Bicomponent Magnonic Crystal. Physical Review Letters, 2012, 109, 137202.	7.8	102
126	Mode conversion from quantized to propagating spin waves in a rhombic antidot lattice supporting spin wave nanochannels. Physical Review B, 2012, 86, .	3.2	58

#	Article	IF	CITATIONS
127	Spin-Wave Band Structure in 2D Magnonic Crystals with Elliptically Shaped Scattering Centres. Advances in Condensed Matter Physics, 2012, 2012, 1-6.	1.1	25
128	On the Formulation of the Exchange Field in the Landau-Lifshitz Equation for Spin-Wave Calculation in Magnonic Crystals. Advances in Condensed Matter Physics, 2012, 2012, 1-14.	1.1	26
129	Calculation of the spin-wave spectra in planar magnonic crystals with metallic overlayers. Journal of Applied Physics, 2012, 111, .	2.5	24
130	Towards high-frequency negative permeability using magnonic crystals in metamaterial design. Physical Review B, 2012, 86, .	3.2	31
131	Huge Goos-Hächen effect for spin waves: A promising tool for study magnetic properties at interfaces. Applied Physics Letters, 2012, 101, 042404.	3.3	32
132	Bulk and edge modes in two-dimensional magnonic crystal slab. Journal of Applied Physics, 2011, 109, 07D311.	2.5	17
133	Semiconductor Superlattice-Based Intermediate-Band Solar Cells. , 2011, , .		Ο
134	Calculation of spin wave spectra in magnetic nanograins and patterned multilayers with perpendicular anisotropy. Journal of Applied Physics, 2011, 109, 113903. Tunable metamaterial response of a Nixmul math xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.5	10
135	display="inline"> <mml:msub><mml:mrow /><mml:mn>80</mml:mn></mml:mrow </mml:msub> Fe <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>20</mml:mn></mml:mrow </mml:msub>antidot lattice for spin waves. Physical Review B.</mml:math 	3.2	45
136	2011, 84 Magnonic minibands in antidot lattices with large spin-wave propagation velocities. Physical Review B, 2011, 84, .	3.2	69
137	The magnetostatic modes in planar one-dimensional magnonic crystals with nanoscale sizes. Journal of Nanoparticle Research, 2011, 13, 6085-6091.	1.9	53
138	The effect of the single-spin defect on the stability of the in-plane vortex state in 2D magnetic nanodots. Journal of Nanoparticle Research, 2011, 13, 6075-6083.	1.9	17
139	Localized magnetostatic modes as guiding waves in ferromagnetic nanostripes. Journal of Physics: Conference Series, 2010, 200, 072056.	0.4	2
140	Materials optimization of the magnonic gap in three-dimensional magnonic crystals with spheres in hexagonal structure. Journal of Applied Physics, 2010, 108, .	2.5	23
141	Electronic and hole minibands in quantum wire arrays of different crystallographic structure. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 647-654.	2.1	3
142	Localization properties of bulk-dead and comb magnetostatic modes in Brillouin light scattering spectrum. Journal of Magnetism and Magnetic Materials, 2010, 322, 562-565.	2.3	2
143	Electronic and hole spectra of layered systems of cylindrical rod arrays: Solar cell application. Journal of Applied Physics, 2010, 107, 043706.	2.5	12
144	Phononic Band Gaps in One-dimensional Phononic Crystals with Nanoscale Periodic Corrugations at Interfaces. FDTD and PWM Simulations. Computational Methods in Science and Technology, 2010, 16, 85-95.	0.3	4

#	Article	IF	CITATIONS
145	Two-dimensional GaAs/AlGaAs superlattice structures for solar cell applications: Ultimate efficiency estimation. Journal of Applied Physics, 2009, 106, .	2.5	21
146	Electronic bands and gaps in two-dimensional semiconductor heterostructures: Square lattice systems of cylindrical quantum wells and barriers. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 581-586.	2.7	4
147	Dipolar surface pinning and spin-wave modes vs. lateral surface dimensions in thin films. Surface Science, 2008, 602, 2197-2205.	1.9	8
148	Plane-wave theory of three-dimensional magnonic crystals. Physical Review B, 2008, 77, .	3.2	222
149	Magnetostatic Waves in One-Dimensional Magnonic Crystals With Magnetic and Nonmagnetic Components. IEEE Transactions on Magnetics, 2008, 44, 2854-2857.	2.1	18
150	The effect of cross-sectional geometry and size on magnetostatic modes in nanorods. Journal of Applied Physics, 2008, 104, 113920.	2.5	2
151	Purely dipolar versus dipolar-exchange modes in cylindrical nanorods. Journal of Applied Physics, 2007, 101, 024326.	2.5	19
152	Magnonic crystal theory of the spin-wave frequency gap in low-doped manganites. Journal of Applied Physics, 2006, 100, 073905.	2.5	22
153	New magnetostatic modes in small nonellipsoidal magnetic particles. Physica Status Solidi (B): Basic Research, 2006, 243, 65-77.	1.5	5
154	Magnons in Co dot. Journal of Magnetism and Magnetic Materials, 2006, 305, 182-185.	2.3	6
155	Magnonic excitations versus three-dimensional structural periodicity in magnetic composites. Crystal Research and Technology, 2006, 41, 547-552.	1.3	20
156	Localization properties of pure magnetostatic modes in a cubic nanograin. Physical Review B, 2005, 71, .	3.2	25
157	Phononic Band Gap Width Control through Structural and Material Parameters in Two-Dimensional Phononic Crystals. Acta Physica Polonica A, 2005, 108, 943-957.	0.5	11
158	Size Effects in Dynamics of Dipolar Planar Nanosystems. Solid State Phenomena, 2004, 99-100, 223-226.	0.3	0
159	Magnonic Crystals — the Magnetic Counterpart of Photonic Crystals. Solid State Phenomena, 2003, 94, 125-134.	0.3	87
160	Spin-wave mode profiles versus surface/interface conditions in ferromagnetic Fe/Ni layered composites. Journal of Physics Condensed Matter, 2003, 15, 2449-2469.	1.8	9
161	Theoretical study of spin wave resonance filling fraction effect in composite ferromagnetic [A B A] trilayer. Journal of Magnetism and Magnetic Materials, 2002, 246, 93-100.	2.3	16
162	On the multiplicity of the surface boundary condition in composite materials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 282, 106-112.	2.1	18

#	Article	IF	CITATIONS
163	Forbidden frequency gaps in magnonic spectra of ferromagnetic layered composites. Physics Letters, Section A: General, Atomic and Solid State Physics, 2001, 282, 186-194.	2.1	55
164	Ferromagnetic Layered Composites. Transfer Matrix Approach. Acta Physica Polonica A, 2001, 100, 195-214.	0.5	11
165	Enhanced Photonic Band Gaps of Periodic Dielectric Structures Composed of Double Cylindrical Rods. Acta Physica Polonica A, 2001, 99, 611-625.	0.5	0
166	Treatment of the Periodically Inhomogeneous Surface: Multiple Boundary Condition. Acta Physica Polonica A, 2000, 97, 1017-1022.	0.5	1
167	Magnonic Spectra of Ferromagnetic Composites Versus Magnetization Contrast. Acta Physica Polonica A, 1998, 93, 805-810.	0.5	32
168	Magnonic Metamaterials. , 0, , .		7
169	Magnonic Band Engineering by Intrinsic and Extrinsic Mirror Symmetry Breaking in Antidot Spin-Wave Waveguides. , 0, .		1