
Adam Schikora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811340/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combined omics approaches reveal distinct responses between light and heavy rare earth elements in Saccharomyces cerevisiae. Journal of Hazardous Materials, 2022, 425, 127830.	12.4	8
2	Biocontrol of Plant Diseases Using <i>Glycyrrhiza glabra</i> Leaf Extract. Plant Disease, 2022, 106, 3133-3144.	1.4	8
3	Barley Rhizosphere Microbiome Transplantation – A Strategy to Decrease Susceptibility of Barley Grown in Soils With Low Microbial Diversity to Powdery Mildew. Frontiers in Microbiology, 2022, 13, .	3.5	8
4	Tillage shapes the soil and rhizosphere microbiome of barley—but not its susceptibility towards <i>Blumeria graminis</i> f. sp. <i>hordei</i> . FEMS Microbiology Ecology, 2021, 97, .	2.7	23
5	Priming negatively affects feeding behaviour and aphid biomass of Rhopalosiphum padi on barley. Journal of Pest Science, 2021, 94, 1237-1247.	3.7	14
6	Mechanisms adopted by Salmonella to colonize plant hosts. Food Microbiology, 2021, 99, 103833.	4.2	20
7	The treasure inside barley seeds: microbial diversity and plant beneficial bacteria. Environmental Microbiomes, 2021, 16, 20.	5.0	37
8	Editorial: Multilateral Interactions in the Rhizosphere. Frontiers in Microbiology, 2021, 12, 798728.	3.5	1
9	Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms, 2020, 8, 1020.	3.6	17
10	Editorial: Plants as Alternative Hosts for Human and Animal Pathogens – Second Edition. Frontiers in Microbiology, 2020, 11, 1439.	3.5	0
11	Impact of Quorum Sensing Molecules on Plant Growth and Immune System. Frontiers in Microbiology, 2020, 11, 1545.	3.5	46
12	AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiology Ecology, 2020, 96, .	2.7	16
13	Salmonella Heterogeneously Expresses Flagellin during Colonization of Plants. Microorganisms, 2020, 8, 815.	3.6	15
14	<i>Salmonella</i> persistence in soil depends on reciprocal interactions with indigenous microorganisms. Environmental Microbiology, 2020, 22, 2639-2652.	3.8	34
15	<i>Salmonella</i> adapts to plants and their environment during colonization of tomatoes. FEMS Microbiology Ecology, 2019, 95, .	2.7	13
16	Genetic Differences in Barley Govern the Responsiveness to <i>N</i> -Acyl Homoserine Lactone. Phytobiomes Journal, 2019, 3, 191-202.	2.7	43
17	Salmonella Establishment in Agricultural Soil and Colonization of Crop Plants Depend on Soil Type and Plant Species. Frontiers in Microbiology, 2019, 10, 967.	3.5	92
18	Priming Is a Suitable Strategy to Enhance Resistance Towards Leaf Rust in Barley. Phytobiomes Journal, 2019, 3, 46-51.	2.7	30

#	Article	IF	CITATIONS
19	Agricultural production systems can serve as reservoir for human pathogens. FEMS Microbiology Letters, 2019, 366, .	1.8	19
20	Detection of Bacterial Quorum Sensing Molecules. Methods in Molecular Biology, 2018, 1734, 171-179.	0.9	5
21	Consistent associations with beneficial bacteria in the seed endosphere of barley (Hordeum vulgare) Tj ETQq1 1	0.784314 2.8	rgBT /Over 0
22	Sewage sludge amendment and inoculation with plant-parasitic nematodes do not facilitate the internalization of Salmonella Typhimurium LT2 in lettuce plants. Food Microbiology, 2018, 71, 111-119.	4.2	4
23	Persistence of Salmonella Typhimurium LT2 in Soil Enhanced after Growth in Lettuce Medium. Frontiers in Microbiology, 2017, 8, 757.	3.5	22
24	Dual Expression of the Salmonella Effector SrfJ in Mammalian Cells and Plants. Frontiers in Microbiology, 2017, 8, 2410.	3.5	3
25	RNase E and RNase J are needed for S-adenosylmethionine homeostasis in Sinorhizobium meliloti. Microbiology (United Kingdom), 2017, 163, 570-583.	1.8	11
26	Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N -acyl homoserine lactone group. Plant Molecular Biology, 2016, 90, 605-612.	3.9	140
27	Editorial on plants as alternative hosts for human and animal pathogens. Frontiers in Microbiology, 2015, 6, 397.	3.5	22
28	Editorial: Plant responses to bacterial quorum sensing molecules. Frontiers in Plant Science, 2015, 6, 643.	3.6	4
29	Staining of Callose Depositions in Root and Leaf Tissues. Bio-protocol, 2015, 5, .	0.4	44
30	Lignin Extraction and Quantification, a Tool to Monitor Defense Reaction at the Plant Cell Wall Level. Bio-protocol, 2015, 5, .	0.4	21
31	Salmonella enterica Flagellin Is Recognized via FLS2 and Activates PAMP-Triggered Immunity in Arabidopsis thaliana. Molecular Plant, 2014, 7, 657-674.	8.3	75
32	The Salmonella effector protein SpvC, a phosphothreonine lyase is functional in plant cells. Frontiers in Microbiology, 2014, 5, 548.	3.5	27
33	<i>N</i> -Acyl-Homoserine Lactone Primes Plants for Cell Wall Reinforcement and Induces Resistance to Bacterial Pathogens via the Salicylic Acid/Oxylipin Pathway. Plant Cell, 2014, 26, 2708-2723.	6.6	166
34	<scp><i>N</i></scp> <i>â€</i> acylâ€homoserine lactonesâ€producing bacteria protect plants against plant and human pathogens. Microbial Biotechnology, 2014, 7, 580-588.	4.2	55
35	Image-based Analysis to Study Plant Infection with Human Pathogens. Computational and Structural Biotechnology Journal, 2014, 12, 1-6.	4.1	17
36	RNase E Affects the Expression of the Acyl-Homoserine Lactone Synthase Gene <i>sinl</i> in Sinorhizobium meliloti. Journal of Bacteriology, 2014, 196, 1435-1447.	2.2	34

#	Article	IF	CITATIONS
37	AHL-priming functions via oxylipin and salicylic acid. Frontiers in Plant Science, 2014, 5, 784.	3.6	79
38	Interactions of Salmonella with animals and plants. Frontiers in Microbiology, 2014, 5, 791.	3.5	82
39	Homoserine Lactones Influence the Reaction of Plants to Rhizobia. International Journal of Molecular Sciences, 2013, 14, 17122-17146.	4.1	77
40	Modified N-acyl-homoserine lactones as chemical probes for the elucidation of plant–microbe interactions. Organic and Biomolecular Chemistry, 2013, 11, 6994.	2.8	12
41	<i>Salmonella,</i> a cross-kingdom pathogen infecting humans and plants. FEMS Microbiology Letters, 2013, 343, 1-7.	1.8	52
42	Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signaling and Behavior, 2012, 7, 178-181.	2.4	109
43	Plants as alternative hosts for Salmonella. Trends in Plant Science, 2012, 17, 245-249.	8.8	92
44	An image classification approach to analyze the suppression of plant immunity by the human pathogen SalmonellaTyphimurium. BMC Bioinformatics, 2012, 13, 171.	2.6	23
45	Quorum Sensing of Bacteria and Trans-Kingdom Interactions of N-Acyl Homoserine Lactones with Eukaryotes. Journal of Chemical Ecology, 2012, 38, 704-713.	1.8	128
46	<i>N</i> -Acyl-Homoserine Lactone Confers Resistance toward Biotrophic and Hemibiotrophic Pathogens via Altered Activation of AtMPK6 Â Â. Plant Physiology, 2011, 157, 1407-1418.	4.8	148
47	Conservation of Salmonella Infection Mechanisms in Plants and Animals. PLoS ONE, 2011, 6, e24112.	2.5	114
48	High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for <i>Arabidopsis</i> Growth in Low Manganese Conditions Â. Plant Cell, 2010, 22, 904-917.	6.6	449
49	Transgenerational Stress Memory Is Not a General Response in Arabidopsis. PLoS ONE, 2009, 4, e5202.	2.5	142
50	MAPK cascade signalling networks in plant defence. Current Opinion in Plant Biology, 2009, 12, 421-426.	7.1	612
51	Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 2009, 103, 1-11.	2.9	703
52	The Dark Side of the Salad: Salmonella typhimurium Overcomes the Innate Immune Response of Arabidopsis thaliana and Shows an Endopathogenic Lifestyle. PLoS ONE, 2008, 3, e2279.	2.5	142
53	Expression, localization, and regulation of the iron transporter LeIRT1 in tomato roots. Plant and Soil, 2006, 284, 101-108.	3.7	16
54	A Mitogen-activated Protein Kinase Kinase Kinase Mediates Reactive Oxygen Species Homeostasis in Arabidopsis. Journal of Biological Chemistry, 2006, 281, 38697-38704.	3.4	311

#	Article	IF	CITATIONS
55	A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant Journal, 2005, 44, 769-782.	5.7	238
56	A Putative Function for the Arabidopsis Fe–Phytosiderophore Transporter Homolog AtYSL2 in Fe and Zn Homeostasis. Plant and Cell Physiology, 2005, 46, 762-774.	3.1	163
57	Proton pumping by tomato roots. Effect of Fe deficiency and hormones on the activity and distribution of plasma membrane H+ -ATPase in rhizodermal cells. Plant, Cell and Environment, 2003, 26, 361-370.	5.7	49
58	Formation of transfer cells and H + -ATPase expression in tomato roots under P and Fe deficiency. Planta, 2002, 215, 304-311.	3.2	57
59	Modulation of the root epidermal phenotype by hormones, inhibitors and iron regime. Plant and Soil, 2002, 241, 87-96.	3.7	5
60	Acclimative changes in root epidermal cell fate in response to Fe and P deficiency: a specific role for auxin?. Protoplasma, 2001, 218, 67-75.	2.1	37
61	Different Pathways Are Involved in Phosphate and Iron Stress-Induced Alterations of Root Epidermal Cell Development. Plant Physiology, 2001, 125, 2078-2084.	4.8	199
62	Iron Stress-Induced Changes in Root Epidermal Cell Fate Are Regulated Independently from Physiological Responses to Low Iron Availability. Plant Physiology, 2001, 125, 1679-1687.	4.8	113
63	Hormones induce an Fe-deficiency-like root epidermal cell pattern in the Fe-inefficient tomato mutantfer. Protoplasma, 2000, 213, 67-73.	2.1	18
64	Role of Hormones in the Induction of Iron Deficiency Responses in Arabidopsis Roots. Plant Physiology, 2000, 122, 1109-1118.	4.8	202
65	Interaction between Salmonella and Plants: Potential Hosts and Vectors for Human Infection. , 0, , .		3