Xiao-Juan Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811249/publications.pdf

Version: 2024-02-01

95

all docs

90 3,473 34
papers citations h-index

95

docs citations

h-index g-index

95
2526
times ranked citing authors

55

#	Article	IF	CITATIONS
1	Modular Synthesis of Tetraurea and Octaurea Macrocycles Encoded with Specific Monomer Sequences. CCS Chemistry, 2022, 4, 2498-2507.	7.8	4
2	Acidâ€Tolerant Sulfate Tetrahedral Cages from Anionâ€Coordinationâ€Driven Assembly. Chemistry - A European Journal, 2022, 28, .	3. 3	7
3	A Hydrogenâ€Bonded Ravel Assembled by Anion Coordination. Angewandte Chemie, 2022, 134, .	2.0	7
4	A Hydrogenâ€Bonded Ravel Assembled by Anion Coordination. Angewandte Chemie - International Edition, 2022, 61, e202115042.	13.8	18
5	Reversible [4 + 2] Photooxygenation in Anion-Coordination-Driven-Assembled A ₂ L ₂ -Type Complexes. Inorganic Chemistry, 2022, 61, 2198-2203.	4.0	5
6	Anion-coordination-driven single–double helix switching and chiroptical molecular switching based on oligoureas. Chemical Science, 2022, 13, 4915-4921.	7.4	8
7	Assembly of metallo-macrocycles through reductive C–C coupling of alkylnitriles by an Mg–Mg-bonded compound. Dalton Transactions, 2022, 51, 4394-4399.	3.3	4
8	Hierarchical Selfâ€Assembly of Adhesive and Conductive Gels with Anionâ€Coordinated Triple Helicate Junctions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
9	Lightâ€Triggered Highâ€Affinity Binding of Tetramethylammonium over Potassium Ions by [18]crownâ€6 in a Tetrahedral Anion Cage. Angewandte Chemie - International Edition, 2022, 61, .	13.8	20
10	Innenrýcktitelbild: Hierarchical Selfâ€Assembly of Adhesive and Conductive Gels with Anionâ€Coordinated Triple Helicate Junctions (Angew. Chem. 22/2022). Angewandte Chemie, 2022, 134, .	2.0	0
11	Stepwise enhancement of fluorescence induced by anion coordination and non-covalent interactions. Dalton Transactions, 2021, 50, 76-80.	3.3	5
12	Activation of Nitrogen-Rich Substrates by Low-Valent, Redox-Active Aluminum Species. Organometallics, 2021, 40, 490-499.	2.3	22
13	Fineâ€Tuning the Springâ€Like Motion of an Anionâ€Based Triple Helicate by Tetraalkylammonium Guests. Angewandte Chemie - International Edition, 2021, 60, 9389-9394.	13.8	24
14	Quaternary Cocrystals Based on Halide-Binding Foldamers through Both Hydrogen and Halogen Bonding. Crystal Growth and Design, 2021, 21, 2837-2843.	3.0	11
15	Reactions of Iso(thio)cyanates with Dialanes: Cycloaddition, Reductive Coupling, or Cleavage of the Câ•S or Câ•O Bond. Inorganic Chemistry, 2021, 60, 14602-14612.	4.0	16
16	Narcissistic self-sorting in anion-coordination-driven assemblies. Chemical Communications, 2021, 57, 6078-6081.	4.1	13
17	Organometallo-macrocycle assembled through dialumane-mediated C–H activation of pyridines. Chemical Communications, 2021, 57, 6268-6271.	4.1	6
18	Main-group metal complexes of \hat{l}_{\pm} -diimine ligands: structure, bonding and reactivity. Dalton Transactions, 2021, 50, 13634-13650.	3.3	30

#	Article	IF	CITATIONS
19	Stabilization of Grignard reagents by a pillar[5]arene host – Schlenk equilibria and Grignard reactions. Chemical Communications, 2020, 56, 1381-1384.	4.1	16
20	Reactivity of Aluminum Complexes of Redox-Active Ligand toward N-Heterocyclic Carbene and Its Thione. Organometallics, 2020, 39, 66-73.	2.3	9
21	Anionâ€Coordinationâ€Assisted Assembly of Supramolecular Chargeâ€Transfer Complexes Based on Tris(urea) Ligands. Chemistry - A European Journal, 2020, 26, 1414-1421.	3.3	4
22	Multiple Transformations among Anion-based A $<$ sub $>2<$ i $>n<$ ii $><$ sub $>1<$ sub $>3<$ i $>n<$ ii $><$ sub $>$ Assemblies: Bicapped Trigonal Antiprism A $<$ sub $>8<$ sub $>1<$ sub $>1<$ sub $>1<$ sub $>$, Tetrahedron A $<$ sub $>4<$ sub $>1<$ sub >1 sub $>$	13.7	36
23	Transformation of carbodiimides to guanidine derivatives facilitated by gallylenes. Chemical Communications, 2020, 56, 7475-7478.	4.1	19
24	Site-Selective Binding of Peripheral Chiral Guests Induces Stereospecificity in A ₄ L ₆ Tetrahedral Anion Cages. Journal of the American Chemical Society, 2020, 142, 6304-6311.	13.7	53
25	Chirality transcription in the anion-coordination-driven assembly of tetrahedral cages. Chemical Communications, 2020, 56, 2475-2478.	4.1	15
26	Reduction of carbodiimides by a dialumane through insertion and cycloaddition. Chemical Communications, 2020, 56, 6352-6355.	4.1	7
27	<i>N</i> , <i>N</i> ,ꀲ-Dipp- <i>o</i> -phenylene-diamido Dianion: A Versatile Ligand for Main Group Metal–Metal-Bonded Compounds. Organometallics, 2020, 39, 1440-1447.	2.3	15
28	Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. International Immunopharmacology, 2019, 75, 105671.	3.8	37
29	Reductive linear- and cyclo-trimerization of isocyanides using an Al–Al-bonded compound. Chemical Communications, 2019, 55, 9452-9455.	4.1	30
30	Anion-Coordination-Driven Assembly of Chiral Quadruple and Single Helices Controlled by Countercations. Crystal Growth and Design, 2019, 19, 6527-6533.	3.0	6
31	Selective recognition of choline phosphate by tripodal hexa-urea receptors with dual binding sites: crystal and solution evidence. Chemical Science, 2019, 10, 2483-2488.	7.4	6
32	Mgâ€"Mg-bonded compounds with <i>N</i> , <i>N</i> à€²-dipp-substituted phenanthrene-diamido and <i>o</i> -phenylene-diamino ligands. Dalton Transactions, 2019, 48, 2295-2299.	3.3	17
33	Reactions of Dianionic α-Diimine-Supported Dimagnesium(I) Compound [K(THF) ₃] ₂ [LMg–MgL] with Nitriles. Organometallics, 2019, 38, 2674-2682.	2.3	14
34	Construction and interconversion of anion-coordination-based ( aniono') grids and double helicates modulated by counter-cations. Chemical Science, 2019, 10, 6278-6284.	7.4	19
35	Gallium "Shears―for C=N and C=O Bonds of Isocyanates. Chemistry - A European Journal, 2019, 25, 8259-8267.	3.3	33
36	Cyclotrimerization of alkynes catalyzed by a self-supported cyclic tri-nuclear nickel (0) complex with \hat{l}_{\pm} -diimine ligands. Dalton Transactions, 2019, 48, 4643-4649.	3.3	12

#	Article	IF	Citations
37	Anion coordination chemistry: From recognition to supramolecular assembly. Coordination Chemistry Reviews, 2019, 378, 415-444.	18.8	141
38	Peripheral Templationâ€Modulated Interconversion between an A ₄ L ₆ Tetrahedral Anion Cage and A ₂ L ₃ Triple Helicate with Guest Capture/Release. Angewandte Chemie - International Edition, 2018, 57, 1851-1855.	13.8	76
39	Peripheral Templationâ€Modulated Interconversion between an A ₄ L ₆ Tetrahedral Anion Cage and A ₂ L ₃ Triple Helicate with Guest Capture/Release. Angewandte Chemie, 2018, 130, 1869-1873.	2.0	40
40	Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage. Journal of the American Chemical Society, 2018, 140, 5248-5256.	13.7	60
41	Anion-coordination-directed self-assemblies. Organic Chemistry Frontiers, 2018, 5, 662-690.	4.5	57
42	Cycloaddition versus Cleavage of the C=S Bond of Isothiocyanates Promoted by Digallane Compounds with Noninnocent αâ€Điimine Ligands. Chemistry - A European Journal, 2018, 24, 14994-15002.	3.3	39
43	Chirality sensing of choline derivatives by a triple anion helicate cage through induced circular dichroism. Chemical Communications, 2018, 54, 7378-7381.	4.1	45
44	Noninnocent ligands: heteroleptic nickel complexes with \hat{l}_{\pm} -diimine and 1,2-diketone derivatives. Dalton Transactions, 2017, 46, 7857-7865.	3.3	15
45	Air- and Light-Stable P ₄ and As ₄ within an Anion-Coordination-Based Tetrahedral Cage. Journal of the American Chemical Society, 2017, 139, 5946-5951.	13.7	80
46	Selective binding of choline by a phosphate-coordination-based triple helicate featuring an aromatic box. Nature Communications, 2017, 8, 938.	12.8	56
47	Sandwich phosphate complexes of macrocyclic tris(urea) ligands and their rotation around the anion. Chemical Communications, 2016, 52, 7310-7313.	4.1	23
48	Ligand "Brackets―for Ga–Ga Bond. Inorganic Chemistry, 2016, 55, 9047-9056.	4.0	40
49	Multinuclear Alkali Metal Complexes of a Triphenylene-Based Hexamine and the Transmetalation to Tris(N-heterocyclic tetrylenes) (Ge, Sn, Pb). Inorganic Chemistry, 2016, 55, 9112-9120.	4.0	23
50	Synthesis and Structures of Mono―and Dinuclear Molybdenum Complexes with Reduced αâ€Diimine Ligands. European Journal of Inorganic Chemistry, 2016, 2016, 5411-5417.	2.0	4
51	Anion recognition by oligo-(thio)urea-based receptors. Chemical Communications, 2016, 52, 9614-9627.	4.1	7 5
52	Encapsulation of Halocarbons in a Tetrahedral Anion Cage. Angewandte Chemie - International Edition, 2015, 54, 8658-8661.	13.8	81
53	Mono―and Dinuclear Heteroleptic Cobalt Complexes with αâ€Diimine and Polyarene Ligands. Chemistry - A European Journal, 2015, 21, 13302-13310.	3.3	13
54	Gallium complexes with \hat{l}_{\pm} -diimine and phenazine in various reduced states. Chemical Communications, 2015, 51, 1237-1239.	4.1	19

#	Article	IF	Citations
55	The Effect of the Spacer of Bis(biurea) Ligands on the Structure of A ₂ L ₃ â€type (A=anion) Phosphate Complexes. Chemistry - A European Journal, 2015, 21, 2588-2593.	3.3	25
56	α-Diimine nickel complexes of ethylene and related alkenes. Dalton Transactions, 2015, 44, 16228-16232.	3.3	10
57	Reactions of \hat{l} ±-diimine-aluminum complexes with sodium alkynides: versatile structures of aluminum \hat{l}_f -alkynide complexes. Dalton Transactions, 2015, 44, 13671-13680.	3.3	19
58	Anionâ€Coordinationâ€Induced Turnâ€On Fluorescence of an Oligoureaâ€Functionalized Tetraphenylethene in a Wide Concentration Range. Angewandte Chemie - International Edition, 2014, 53, 6632-6636.	13.8	155
59	Reactivity of Dialumane and "Dialumene―Compounds toward Alkenes. Chemistry - A European Journal, 2013, 19, 12059-12066.	3.3	40
60	Distinct Stepwise Reduction of a NickelNickelâ€Bonded Compound Containing an αâ€Diimine Ligand: From Perpendicular to Coaxial Structures. Chemistry - A European Journal, 2013, 19, 15240-15247.	3.3	24
61	Nickel Complexes with Two Types of Noninnocent Ligands: α-Diimine and Phenazine. Organometallics, 2013, 32, 2866-2869.	2.3	20
62	Activation of alkynes by an α-diimine-stabilized Alâ€"Al-bonded compound: insertion into the Alâ€"Al bond or cycloaddition to AlN2C2 rings. Chemical Communications, 2013, 49, 4546.	4.1	49
63	Stepwise Encapsulation of Sulfate Ions by Ferrocenylâ€Functionalized Tripodal Hexaurea Receptors. Chemistry - A European Journal, 2013, 19, 9034-9041.	3.3	29
64	Tetrahedral Anion Cage: Selfâ€Assembly of a (PO ₄) ₄ L ₄ Complex from a Tris(bisurea) Ligand. Angewandte Chemie - International Edition, 2013, 52, 5096-5100.	13.8	87
65	From anion complexes to anion coordination polymers (ACPs): assembly with a 1,5-naphthylene bridged bis-bisurea ligand. CrystEngComm, 2013, 15, 4540.	2.6	12
66	Dinuclear Chlorideâ€Binding Foldamers Based on Fluorescent Oligoureas. European Journal of Organic Chemistry, 2013, 2013, 3446-3454.	2.4	11
67	Synthesis and Characterization of Cobalt Complexes with Radical Anionic α-Diimine Ligands. Organometallics, 2013, 32, 6945-6949.	2.3	18
68	Anion-Dependent Formation of Helicates versus Mesocates of Triple-Stranded $M \cdot Sub > 2 \cdot Sub > L \cdot Sub > 3 \cdot Sub > (M = Fe \cdot Sup > 2 + (Sup > 2 + (Sup$	4.0	78
69	lon-pair induced self-assembly of molecular barrels with encapsulated tetraalkylammonium cations based on a bis–trisurea stave. Chemical Communications, 2012, 48, 3097.	4.1	19
70	A bis-bisurea receptor with the R,R-cyclohexane-1,2-diamino spacer for phosphate and sulfate ions. Organic and Biomolecular Chemistry, 2012, 10, 8758.	2.8	19
71	Reactions of α-Diimine-Stabilized Zn–Zn-Bonded Compounds with Phenylacetylene. Organometallics, 2012, 31, 2978-2985.	2.3	28
72	Synthesis and Reactivity of Nickel Hydride Complexes of an \hat{l}_{\pm} -Diimine Ligand. Inorganic Chemistry, 2012, 51, 13162-13170.	4.0	53

#	Article	IF	Citations
73	Chloride Coordination by Oligoureas: From Mononuclear Crescents to Dinuclear Foldamers. Organic Letters, 2012, 14, 684-687.	4.6	44
74	Mechanistic Insight into the NN Bondâ€Cleavage of Azoâ€Compounds that was Induced by an AlAlâ€bond Compound [L ^{2â^'} Al ^{II} Al ^{II} L ^{2â^'}]. Chemistry - A European Journal, 2012, 18, 6022-6030.	led 3.3	69
75	Binuclear Alkaline Earth Metal Compounds (Be, Mg, Ca, Sr, Ba) with α-Diimine Ligands: A Computational Study. Organometallics, 2011, 30, 3113-3118.	2.3	18
76	Syntheses and Structures of Magnesium Complexes with Reduced \hat{l}_{\pm} -Diimine Ligands. Organometallics, 2011, 30, 6071-6077.	2.3	28
77	Calcium Complexes of Noninnocent α-Diimine Ligands. Organometallics, 2011, 30, 1599-1606.	2.3	32
78	Highly Efficient Extraction of Sulfate Ions with a Tripodal Hexaurea Receptor. Angewandte Chemie - International Edition, 2011, 50, 486-490.	13.8	166
79	A Triple Anion Helicate Assembled from a Bis(biurea) Ligand and Phosphate Ions. Angewandte Chemie - International Edition, 2011, 50, 5721-5724.	13.8	105
80	Alkali metal compounds of a gallium(I) carbene analogue {:Ga[N(Ar)C(Me)]2} (Ar=2,6-iPr2C6H3). Journal of Organometallic Chemistry, 2011, 696, 1450-1455.	1.8	25
81	Tetraureas versus Triureas in Sulfate Binding. Organic Letters, 2010, 12, 5612-5615.	4.6	60
82	A fully complementary, high-affinity receptor for phosphate and sulfate based on an acyclic tris(urea) scaffold. Chemical Communications, 2010, 46, 5376.	4.1	109
83	Magnesiumâ 'Magnesium Bond Stabilized by a Doubly Reduced α-Diimine: Synthesis and Structure of [K(THF) < sub > 3 < / sub > 2 < / sub > [LMgâ 'MgL] (L =) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 342 Td ([(2) Journal of the American Chemical Society, 2009, 131, 4210-4211.	2,6-	<i<u>}i;/i></i<u>
84	Synthesis and Structure of a Zincâ-'Zinc-Bonded Compound with a Monoanionic $\hat{l}\pm$ -Diimine Ligand, [LZnâ-'ZnL] (L = [(2,6-iPr2C6H3)NC(Me)]2â-'). Organometallics, 2009, 28, 5270-5272.	2.3	49
85	Zinc compounds with or without Zn–Zn bond: Alkali metal reduction of LZnCl2 (L = α-diimine ligands). Dalton Transactions, 2009, , 5773.	3.3	45
86	Sodium and Magnesium Complexes with Dianionic \hat{l}_{\pm} -Diimine Ligands. Organometallics, 2008, 27, 5830-5835.	2.3	43
87	Sulfate ion encapsulation in caged supramolecular structures assembled by second-sphere coordination. Chemical Communications, 2008, , 1762.	4.1	167
88	Dinuclear versus Mononuclear Zinc Compounds from Reduction of LZnCl2 (L = \hat{l} ±-Diimine Ligands): Effects of the Ligand Substituent, Reducing Agent, and Solvent. Organometallics, 2008, 27, 5800-5805.	2.3	56
89	A new zinc–zinc-bonded compound with a dianionic α-diimine ligand: synthesis and structure of [Na(THF)2]2·[LZn–ZnL] (L = [(2,6-iPr2C6H3)N(Me)C]22â^'). Chemical Communications, 2007, , 2363-2365.	4.1	97
90	Hierarchical Selfâ€Assembly of Adhesive and Conductive Gels with Anionâ€Coordinated Triple Helicate Junctions. Angewandte Chemie, 0, , .	2.0	5