
Loren D Walensky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2811146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Nature Communications, 2022, 13, .	5.8	5
2	Characterizing Native and Hydrocarbon-Stapled Enfuvirtide Conformations with Ion Mobility Mass Spectrometry and Hydrogen–Deuterium Exchange. Journal of the American Society for Mass Spectrometry, 2021, 32, 753-761.	1.2	5
3	The conformational stability of pro-apoptotic BAX is dictated by discrete residues of the protein core. Nature Communications, 2021, 12, 4932.	5.8	13
4	Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. Journal of Cell Biology, 2021, 220, .	2.3	40
5	Glucose metabolism and pyruvate carboxylase enhance glutathione synthesis and restrict oxidative stress in pancreatic islets. Cell Reports, 2021, 37, 110037.	2.9	21
6	A redox switch regulates the structure and function of anti-apoptotic BFL-1. Nature Structural and Molecular Biology, 2020, 27, 781-789.	3.6	4
7	Identification of a Structural Determinant for Selective Targeting of HDMX. Structure, 2020, 28, 847-857.e5.	1.6	2
8	Targeting a helix-in-groove interaction between E1 and E2 blocks ubiquitin transfer. Nature Chemical Biology, 2020, 16, 1218-1226.	3.9	5
9	Hydrocarbon-Stitched Peptide Agonists of Glucagon-Like Peptide-1 Receptor. ACS Chemical Biology, 2020, 15, 1340-1348.	1.6	11
10	ldentification of a Covalent Molecular Inhibitor of Anti-apoptotic BFL-1 by Disulfide Tethering. Cell Chemical Biology, 2020, 27, 647-656.e6.	2.5	28
11	Glucose-dependent partitioning of arginine to the urea cycle protects Î ² -cells from inflammation. Nature Metabolism, 2020, 2, 432-446.	5.1	27
12	Homogeneous Oligomers of Pro-apoptotic BAX Reveal Structural Determinants of Mitochondrial Membrane Permeabilization. Molecular Cell, 2020, 79, 68-83.e7.	4.5	32
13	Site-Dependent Cysteine Lipidation Potentiates the Activation of Proapoptotic BAX. Cell Reports, 2020, 30, 3229-3239.e6.	2.9	15
14	Mind the gap: Expediting gender parity in MD-PhD admissions. JCI Insight, 2020, 5, .	2.3	4
15	Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice. Nature Biotechnology, 2019, 37, 1186-1197.	9.4	187
16	Targeting BAX to drug death directly. Nature Chemical Biology, 2019, 15, 657-665.	3.9	69
17	Cheating Death: New Molecules Block BAX. Trends in Molecular Medicine, 2019, 25, 259-261.	3.5	1
18	MDM2 and MDM4 Are Therapeutic Vulnerabilities in Malignant Rhabdoid Tumors. Cancer Research,	0.4	43

2019, 79, 2404-2414.

#	Article	IF	CITATIONS
19	Dynamic Regulation of Long-Chain Fatty Acid Oxidation by a Noncanonical Interaction between the MCL-1 BH3 Helix and VLCAD. Molecular Cell, 2018, 69, 729-743.e7.	4.5	45
20	lterative optimization yields Mcl-1–targeting stapled peptides with selective cytotoxicity to Mcl-1–dependent cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E886-E895.	3.3	69
21	Crystal Structures of Anti-apoptotic BFL-1 and Its Complex with a Covalent Stapled Peptide Inhibitor. Structure, 2018, 26, 153-160.e4.	1.6	35
22	Precision Targeting of BFL-1/A1 and an ATM Co-dependency in Human Cancer. Cell Reports, 2018, 24, 3393-3403.e5.	2.9	15
23	Genome-scale CRISPR-Cas9 screen identifies druggable dependencies in <i>TP53</i> wild-type Ewing sarcoma. Journal of Experimental Medicine, 2018, 215, 2137-2155.	4.2	55
24	<i>Bim</i> gene dosage is critical in modulating nephron progenitor survival in the absence of microRNAs during kidney development. FASEB Journal, 2017, 31, 3540-3554.	0.2	15
25	Direct Activation of BAX by BTSA1 Overcomes Apoptosis Resistance in Acute Myeloid Leukemia. Cancer Cell, 2017, 32, 490-505.e10.	7.7	128
26	Extra-mitochondrial prosurvival BCL-2 proteins regulate gene transcription by inhibiting the SUFUÂtumour suppressor. Nature Cell Biology, 2017, 19, 1226-1236.	4.6	38
27	Paclitaxel Reduces Axonal Bclw to Initiate IP3R1-Dependent Axon Degeneration. Neuron, 2017, 96, 373-386.e6.	3.8	83
28	Allosteric sensitization of proapoptotic BAX. Nature Chemical Biology, 2017, 13, 961-967.	3.9	40
29	Phase I trial of a novel stapled peptide ALRN-6924 disrupting MDMX- and MDM2-mediated inhibition of <i>WT p53</i> in patients with solid tumors and lymphomas Journal of Clinical Oncology, 2017, 35, 2505-2505.	0.8	71
30	Allosteric inhibition of antiapoptotic MCL-1. Nature Structural and Molecular Biology, 2016, 23, 600-607.	3.6	46
31	Biophysical determinants for cellular uptake of hydrocarbon-stapled peptide helices. Nature Chemical Biology, 2016, 12, 845-852.	3.9	178
32	Challenges in Targeting a Basic Helix–Loop–Helix Transcription Factor with Hydrocarbon-Stapled Peptides. ACS Chemical Biology, 2016, 11, 3146-3153.	1.6	15
33	Selective Covalent Targeting of Anti-Apoptotic BFL-1 by Cysteine-Reactive Stapled Peptide Inhibitors. Cell Chemical Biology, 2016, 23, 1123-1134.	2.5	59
34	Reply to Fernandez-Marrero et al.: Role of BOK at the intersection of endoplasmic reticulum stress and apoptosis regulation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E494-E495.	3.3	9
35	BCL-2 family member BOK promotes apoptosis in response to endoplasmic reticulum stress. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7201-7206.	3.3	104
36	Phospho-BAD BH3 Mimicry Protects β Cells and Restores Functional β Cell Mass in Diabetes. Cell Reports, 2015, 10, 497-504.	2.9	26

#	Article	IF	CITATIONS
37	Inhibition of Pro-Apoptotic BAX by a Noncanonical Interaction Mechanism. Molecular Cell, 2015, 57, 873-886.	4.5	116
38	Direct inhibition of oncogenic KRAS by hydrocarbon-stapled SOS1 helices. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1761-1766.	3.3	137
39	A Nonapoptotic Role for BAX and BAK in Eicosanoid Metabolism. ACS Chemical Biology, 2015, 10, 1398-1403.	1.6	4
40	Regulation of mitochondrial ceramide distribution by members of the BCL-2 family. Journal of Lipid Research, 2015, 56, 1501-1510.	2.0	22
41	Generation of Multiple Reporter Ions from a Single Isobaric Reagent Increases Multiplexing Capacity for Quantitative Proteomics. Analytical Chemistry, 2015, 87, 9855-9863.	3.2	42
42	Cellular Uptake and Ultrastructural Localization Underlie the Pro-apoptotic Activity of a Hydrocarbon-stapled BIM BH3 Peptide. ACS Chemical Biology, 2015, 10, 2149-2157.	1.6	33
43	SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nature Medicine, 2015, 21, 1491-1496.	15.2	334
44	Stapled HIV-1 peptides recapitulate antigenic structures and engage broadly neutralizing antibodies. Nature Structural and Molecular Biology, 2014, 21, 1058-1067.	3.6	69
45	Hydrocarbon-Stapled Peptides: Principles, Practice, and Progress. Journal of Medicinal Chemistry, 2014, 57, 6275-6288.	2.9	632
46	A phospho-BAD BH3 helix activates glucokinase by a mechanism distinct from that of allosteric activators. Nature Structural and Molecular Biology, 2014, 21, 36-42.	3.6	46
47	Photoreactive Stapled Peptides to Identify and Characterize BCL-2 Family Interaction Sites by Mass Spectrometry. Methods in Enzymology, 2014, 544, 25-48.	0.4	10
48	Distinct BimBH3 (BimSAHB) Stapled Peptides for Structural and Cellular Studies. ACS Chemical Biology, 2014, 9, 831-837.	1.6	86
49	Mucosal delivery of a double-stapled RSV peptide prevents nasopulmonary infection. Journal of Clinical Investigation, 2014, 124, 2113-2124.	3.9	61
50	Direct BAKtivation. Nature Structural and Molecular Biology, 2013, 20, 536-538.	3.6	7
51	Targeted disruption of the EZH2–EED complex inhibits EZH2-dependent cancer. Nature Chemical Biology, 2013, 9, 643-650.	3.9	302
52	The retinoblastoma protein induces apoptosis directly at the mitochondria. Genes and Development, 2013, 27, 1003-1015.	2.7	102
53	Direct activation of full-length proapoptotic BAK. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E986-95.	3.3	142
54	Multimodal Interaction with BCL-2 Family Proteins Underlies the Proapoptotic Activity of PUMA BH3. Chemistry and Biology, 2013, 20, 888-902.	6.2	61

#	Article	IF	CITATIONS
55	Playing FullBAK. Cell Cycle, 2013, 12, 1333-1334.	1.3	2
56	From Mitochondrial Biology to Magic Bullet: Navitoclax Disarms BCL-2 in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2012, 30, 554-557.	0.8	26
57	Targeted Disruption of the BCL9/ \hat{l}^2 -Catenin Complex Inhibits Oncogenic Wnt Signaling. Science Translational Medicine, 2012, 4, 148ra117.	5.8	214
58	A Competitive Stapled Peptide Screen Identifies a Selective Small Molecule that Overcomes MCL-1-Dependent Leukemia Cell Survival. Chemistry and Biology, 2012, 19, 1175-1186.	6.2	128
59	Direct and selective small-molecule activation of proapoptotic BAX. Nature Chemical Biology, 2012, 8, 639-645.	3.9	160
60	A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. Journal of Clinical Investigation, 2012, 122, 2018-2031.	3.9	153
61	Stemming Danger with Golgified BAX. Molecular Cell, 2012, 46, 554-556.	4.5	2
62	Tracking BAX once its trigger is pulled. Cell Cycle, 2011, 10, 868-870.	1.3	10
63	BAX unleashed: the biochemical transformation of an inactive cytosolic monomer into a toxic mitochondrial pore. Trends in Biochemical Sciences, 2011, 36, 642-652.	3.7	148
64	Chemical Synthesis of Hydrocarbonâ€Stapled Peptides for Protein Interaction Research and Therapeutic Targeting. Current Protocols in Chemical Biology, 2011, 3, 99-117.	1.7	72
65	A Stapled p53 Helix Overcomes HDMX-Mediated Suppression of p53. Cancer Cell, 2010, 18, 411-422.	7.7	264
66	Photoreactive Stapled BH3 Peptides to Dissect the BCL-2 Family Interactome. Chemistry and Biology, 2010, 17, 1325-1333.	6.2	45
67	The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nature Chemical Biology, 2010, 6, 595-601.	3.9	374
68	Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14093-14098.	3.3	296
69	BH3-Triggered Structural Reorganization Drives the Activation of Proapoptotic BAX. Molecular Cell, 2010, 40, 481-492.	4.5	272
70	BAX activation is initiated at a novel interaction site. Nature, 2008, 455, 1076-1081.	13.7	617
71	Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nature Medicine, 2008, 14, 144-153.	15.2	285
72	Chapter 23 Dissection of the BCLâ€⊋ Family Signaling Network with Stabilized αâ€Helices of BCLâ€⊋ Domains. Methods in Enzymology, 2008, 446, 387-408.	0.4	44

#	Article	IF	CITATIONS
73	Chapter 22 Synthesis and Biophysical Characterization of Stabilized αâ€Helices of BCLâ€2 Domains. Methods in Enzymology, 2008, 446, 369-386.	0.4	86
74	A Stapled BIM BH3 Helix Overcomes the MCL-1-Mediated Apoptotic Blockade of Refractory Hematologic Cancers. Blood, 2008, 112, 862-862.	0.6	1
75	A Stapled p53 Helix Targets HDMX to Overcome Nutlin-3 Resistance and Reactivate the p53 Tumor Suppressor Pathway in Cancer. Blood, 2008, 112, 2645-2645.	0.6	0
76	Reactivation of the p53 Tumor Suppressor Pathway by a Stapled p53 Peptide. Journal of the American Chemical Society, 2007, 129, 2456-2457.	6.6	498
77	Pharmacologic Replacement of BIM BH3 Reactivates Apoptosis in Hematologic Cancer and Lymphoproliferative Disease Blood, 2007, 110, 524-524.	0.6	0
78	A Stapled BID BH3 Helix Directly Binds and Activates BAX. Molecular Cell, 2006, 24, 199-210.	4.5	347
79	BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death and Differentiation, 2006, 13, 1339-1350.	5.0	221
80	A Membrane-targeted BID BCL-2 Homology 3 Peptide Is Sufficient for High Potency Activation of BAX in Vitro. Journal of Biological Chemistry, 2006, 281, 36999-37008.	1.6	74
81	Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix. Science, 2004, 305, 1466-1470.	6.0	1,236
82	Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2002, 2, 183-192	7.7	1,467

cancer therapeutics. Cancer Cell, 2002, 2, 183-192.